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1 Structured populations

Individuals in natural populations differ from one another in very many ways. While some
of these differences are irrelevant for the future fate of the population, others are crucial.
It is one of the main challenges of ecological and evolutionary theory alike to identify the
most relevant differences and to include them into a model. In evolutionary models, the
main focus is usually on differences among individual genotypes. After all, the study of
changes in the genetic composition of a population is the objective of population genetics.
Accordingly, a major part of population genetic theory ignores all other differences among
individuals. Mathematically, this means that individuals with the same genotype are
exchangeable, i.e., the model (and all results that can be derived from the model) are
invariant under arbitrary permutations of these individuals. Obviously, this assumption
leads to a significant simplification of the mathematical formalism. For many or most
natural populations, however, this is a gross over-simplification.

In the first part of this lecture, we will take a closer look at the impact of non-genetic
differences among individuals on the course of evolution. Maybe the most important aspect
of population structure is space: individuals live in certain local neighborhoods, and they
are more likely to mate or to compete with conspecifics that live in this same neighborhood
than with individuals that live in remote parts of the habitat. Most of our models below
will thus treat spatial structure, but we will also see that ploidy levels and the mode
of reproduction (inbreeding or outbreeding) can lead to similar effects. Other aspects of
structure include the age distribution of a population. Our main goal in the first part is
to describe neutral evolution in a structured population and we will mainly use stochastic
theory of the structured coalescent to address these issue.

In a second part of the lecture, we will turn to a set of problems that is at first sight
quite unrelated: complex multi-locus genotypes under selection. We will see that methods
for population structure can also be applied to this case. The crucial key idea is to split
the a genotype into a focal gene and its genetic background. The genetic background then
takes the role of the “habitat” an allele at the focal gene lives in. In the course of evolution,
alleles can switch backgrounds by recombination. ths leads us to models of background
selectio and selective sweeps that are used to describe the impact of selection on patterns of
nucleotide diversity in populations and to infer event of past selection from these patterns.
Finally, in a third part of the lecture we provide a brief introduction to models on selection
in a spatially structured population.

1.1 No structure

Before talking about the effects of population structure, we should first clarify what the
absence of structure means. Mathematically, a population model has no structure if all
individuals with the same genotype are exchangeable. We can then subsume all these
individuals in a single number: the frequency of a genotype. Biologically, this implies that
competition and matings among individuals should only depend on genetic factors – and
random chance.
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In the ideal diploid Wright-Fisher model mating is random and a new diploid individual is
formed by combining two random haploid gametes (taken from diploid parents). If two alleles
A and a at a locus occur with frequencies p and q = 1− p we obtain the following expected
frequencies for the genotypes in the offspring generation:

p2 for genotype AA,
2pq for genotype Aa,
q2 for genotype aa.

Random mating (or panmixia), in particular, is a mating scheme that guarantees ab-
sence of population structure for this phase of the life cycle. In terms of the coalescent,
this assumption means that any two alleles from the offspring generation have the same
probability to have a common ancestor in the previous generation. Forward in time, a
single generation of random mating in a diploid population (two generations with separate
sexes) leads to Hardy-Weinberg proportions in the expected genotype frequencies of the
offspring generation (before selection). Vice-versa, approximate Hardy-Weinberg (HW)
proportions in a natural population are often taken as evidence of absence of population
structure. Due to genetic drift, the match will never be perfect in a finite population (or
any population sample), but a standard χ2 test easily answers the question whether the
differences are significant. Deviations from HW proportions can have causes other than
population structure, such as assortative mating based on genotypes, or other types of
selection on mate choice or fertility. However, since HW equilibrium is restored in a single
generation,only factors that affect the population in the present generation will matter and
effects do not easily add up across generations. This is in contrast to deviation from linkage
equilibrium, which has a much longer memory (and therefore can tell us more about the
history of a population).

Global competition means that all individuals (with the same genotype) are equal and
exchangeable with respect to selection. I.e., selection during a single generation does not
depend on any non-genetic variables, such as space. If selection acts at a different life
stage than mating, we can have global competition either with random mating or with
non-random mating. An example for the latter are species like salmon, where individuals
mate at the place where they were born, but mix and compete during other phases of their
life cycle.

1.2 A general model of population structure

Imagine a population of diploid size N , corresponding to 2N gene copies (haploids). Evo-
lution proceeds in discrete generations like in a Wright-Fisher model. To introduce popu-
lation structure, we assume that individuals carry non-genetic labels. These group labels
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can affect the life at various stages. With local competition, only (or primarily) individ-
uals in the same group compete for a common resource. With group-structured mating,
individuals with the same group label are more (or also less) likely to mate. In general,
the life-cycle could be modeled as follows:

1. We census our population in the zygote state of newborn offspring. All individuals
belong to one or several groups, indicated by a group label or parameter.

2. Each group produces an infinite offspring pool (gametes) and offspring inherit the
group label. Back in time, only offspring with the same group label can coalesce.

3. Selection and mutation (if included in the model) happen on the level of the infinite
offspring pools. Both change the frequencies of the allelic composition in the pools.
Selection either happens during the gametic life stage or already during reproduction
via differential adult fertilities. Importantly, selection can be local and act only
among individuals of the same group. Alternatively, selection can be global and
change the size (or weight) of different offspring pools relative to each other.

4. Finally, individuals (zygotes) in the offspring generation are sampled from the infinite
offspring pools. Offspring individuals are assigned to new groups. The sampling
rules define whether and how alleles from different offspring pools can mix and enter
a common group in the new generation. This is, they define how much gene-flow
(genetic exchange) among groups will occur.

This framework comprises a large number of specific models, in particular:

• Fixed deme structure. In the standard model for spatial structure, the pop-
ulation inhabits a finite number of demes (or islands) of fixed size. Both mating
and competition occur locally on the island, genetic exchange is possible through
migration. We will discuss this model in detail in section 1.4.

• Levene model: No structure during reproduction. If we assume that as-
signment to new groups is independent of the individual labels, there is no population
structure with respect to mating. This is a limiting case of the fixed deme model for
strong migration. The group labels are only relevant for the selection phase, which
occurs within each deme (soft selection). After selection, they become irrelevant: We
can join all gamete pools and sample from the joint pool to obtain a new generation
of zygotes.

• Hard selection: No structure during competition. In the opposite extreme,
we assume that there is global competition for resources among individuals of all
groups. This means that the group labels do not influence the offspring distribution
of any individual: They do not affect decent. We thus obtain the same distribution
of coalescent histories as without labels if we start with a random sample from the
total population. However, the labels are informative of relatedness (they reflect
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descent). Usually, individuals with the same label will be closer related, on average,
than random individuals. We thus get changed coalescent histories if we do not
sample randomly with respect to labels.

• Selfing model: Diploids as groups. Here, each diploid individual is treated
as a group of size 2. Each diploid produces its own offspring pool. For the next
generation, diploid offspring are produced by sampling pairs of individuals from the
old pools. Both come from the same offspring pool with the selfing probability ps.
We will further expand this approach in the next section.

Our general model shows that population structure can either act together with selection,
but also entirely on its own, to affect the genealogical relationships in a population. In
the following sections, we will first discuss in some detail how population structure acts
under neutrality. Only in part 3 of the lecture, we will also discuss models that combine
population structure and selection. An important aim of population genetic theory is to
link an evolutionary model (which may include population structure) to observable pat-
terns in DNA diversity. For a neutral model, this can be done in two steps: in the first
step, we ask how population structure influences the genealogical relationships among in-
dividuals (decent). These relationships exist independently of allelic types (state). Allelic
types (mutations) are only added in the second step. As we will see below, the skews in
genealogies due to population structure often lead to characteristic patterns in polymor-
phism and diversity. It is important, however, to recognize these patterns as a consequence
of structure, rather than its definition.

1.3 Inbreeding

The mating of relatives to produce offspring is referred to as inbreeding. The most extreme
form of inbreeding results from self-fertilization which is possible in many plants but also
in snails and fungi. But also any other scenario that leads to higher relatedness of mated
pairs than expected for random picks from the population will induce inbreeding. There
are several such scenarios, with should be distinguished due to their diverging implications
on population structure. Note first that spatial population structure with local matings
and limited dispersal of offspring will lead to inbreeding as a by-product. Alternatively,
inbreeding can be the primary effect if preferred matings among relatives (or avoidance
thereof) is a property of the mating system. Since this makes matings dependent on a
non-genetic factor (because, e.g., relatives are preferred over strangers even if the latter are
genetically identical), it induces population structure – but no spatial structure if dispersal
of offspring is global. Finally, assortative mating based on similarities in genotype or
phenotype leads to inbreeding without any population structure according to our definition
above.

Let us focus on the second scenario, where inbreeding is the primary effect rather
than a by-product. Consider a population of diploids. Two individuals are related of
degree k if they have a (most recent) common ancestor k generations ago. Assume that
there is non-random mating of related individuals up to a certain degree of relatedness
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(such a full/half sibs, cousins, etc), but random mating among more distantly related
individuals. To quantify the strength of inbreeding, we define the inbreeding coefficient f
as the probability that two homologous alleles in an individual are identical by descent due
to inbreeding. To formalize this, assign labels to family groups, where two alleles belong to
the same family if and only if the individuals they belong to are related up to the degree
considered. Note that groups are not necessarily disjoint: an allele can belong to multiple
family groups. Now follow the ancestry of the two homologous alleles in the focal individual
back in time as long as the both lines still belong to a common family group. Define f as
the probability that both lines coalesce during this time.

There are two main ways how this definition can be used:

1. If the pedigree of the focal individual is known up to some founder generation, where
all ancestors are (assumed to be) unrelated, we can calculate the individual inbreeding
coefficient f = fi, which tells us the average level of inbreeding along the genome of
this focal individual. This is usually done in breeding programs where pedigrees are
recorded and the founder generation may represent the start of the program from a
sample of wild-caught animals or collected plants. Depending on the pedigree, the
inbreeding coefficient of different individuals will usually be different.

2. Alternatively, if we know about average mating probabilities among relatives in a wild
(or managed) population, we can derive a population-wide average inbreeding coef-
ficient, which we will simply denote as f . This is what is usually done in population
genetic models of natural populations.

3. One can easily extend the concept of the inbreeding coefficient by considering excess
identity by descent among two homologous alleles in related individuals (such as in
sibs) rather than in the same individual. The coefficient is also called coancestry
coefficient in this context.

Depending on the mating system, the derivation of the inbreeding coefficient can lead to
lengthly calculations. We will only consider two simple cases, self-fertilization and full-sib
mating, where the analysis is simple.

Selfing Assume that in a diploid population fertilization can occur by either random
mating or selfing, and that selfing occurs with probability ps. Alleles then form “family”
groups of two, which sit in the same individual. With probability ps, mating occurs within
the group, and with probability 1 − ps it occurs with an allele from a different group.
Backward in time, the probability that two homologous alleles in the same offspring in-
dividual derive from the same allele in the parent generation is ps/2. Indeed, we need,
first, that both alleles are from the same diploid parent (probability ps), and, second, that
both are copies from the same parental allele (probability 1/2 with random segregation).
The probability that both lines of descent have not yet coalesced, but are still in the same
group (= same individual) is also ps/2. We thus find

f =
ps
2

+
(ps

2

)2

+
(ps

2

)3

+ · · · = ps
2− ps

. (1.1)
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As expected, the inbreeding coefficient can vary between f = 0 for obligate outcrossers,
ps = 0, and f = 1 for strict selfers, ps = 1. Note that random mating (random union of
gametes), as assumed in the diploid Wright-Fisher model, corresponds to ps = 1/N and
thus a slightly positive value for f .

• An even simpler model of selfing results if we assume that all sperms and eggs of an
individual are genetically identical, e.g., because they are produced during a haploid
stage of the life cycle. If ps is the probability that an egg is fertilized by a sperm
from the same individual (selfing rate), we simply have f = ps in this case. For
convenience, this scheme is often used in population genetic models to account for
effects of inbreeding.

Full-sib mating Consider again a diploid sexual population. Selfing is not possible,
but there is a probability p1 that mating occurs among full sibs (first-degree relatives).
Backward in time, two homologous alleles in the same individual will thus go back to full
sibs in the previous generation with probability pi. Consider now two homologous alleles
from full sibs: With probability 1/4, they will coalesce in the previous generation. With
probability 1/4 they will go back to the same individual, but not coalesce. Finally, with
probability pi/2 they will go back to full sibs again. Call the coancestry coefficient for full
sibs ffs. We then have

f = p1ffs , (1.2)

ffs =
1

4
+

1

4
f +

p1

2
ffs , (1.3)

which derives to
f = p1ffs =

p1

4− 3p1

. (1.4)

Inbreeding and the coalescent

The effect of (family) group structure and inbreding on the coalescent becomes apparent
if we compare the genealogies of pairs of homologous alleles that are either taken from a
single diploid individual or randomly drawn from the entire population. Let E[TI ] and
E[TT ] be the expected coalescent times for these two cases, respectively. We consider the
case of two homologs from a single diploid first. Back in time, one of two events will occur:
with probability f both lines of descent will coalesce within the group of related ancestors,
while with probability (1 − f) both lines will enter unrelated ancestors at some point in
time. Let T0 be the time in generations when either of these events happens. We then
have

E[TI ] = E[T0] + (1− f)E[TT ] (1.5)

(where we ignore the case that a random pick from the entire population may come from
related individuals). We can now define

fIT =
E[TT ]− E[TI ]

E[TT ]
= f − E[T0]

E[TT ]
≈ f . (1.6)
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f thus measures (approximately) the percentage reduction in the expected coalescence
time of two genes in the same individual due to inbreeding. The approximation is based on
the fact the we generally have E[T0]� E[TT ]. Exact results can be calculated for specific
models. E.g., for the diploid selfing model we have

E[T0] =
1

(1− ps) + ps/2
=

2

2− ps
= 1 + f (1.7)

E[TT ] = N +
1

2

(
E[T0] + (1− f)E[TT ]

)
=

2N

1 + f
+ 1 ≈ 2N

1 + f
. (1.8)

(E[TT ] reduces to 2N with f = 1/(2N − 1) as it should). Thus, the term E[T0]/E[TT ] =
(1 + f)2/(2N + 1 + f) only contributes a correction of order 1/N . If we measure time
in units of the haploid population size, τ = t/(2N), and apply the usual coalescent limit
N → ∞, the time E[T0] scales to zero and can be ignored. This holds more generally for
models of inbreeding also beyond selfing. For the coalescent, we then obtain a combined
process on two time scales:

• Coalescent events among genes in related individuals due to inbreeding occur instan-
taneously.

• Coalescent times among genes in unrelated individuals, and among related genes
that do not coalesce due to inbreeding, are rescaled by a factor that depends on the
inbreeding coefficient. For selfing, in particular, we see that coalescent times of such
genes are reduced by (1 + f).

If we want to construct the full coalescent process for a larger sample from a partially selfing
population, we need to distinguish two scenarios, depending on the sampling procedure.

1. If all gene copies in the sample are taken from different individuals, all coalescent
event happen on the “slow” time scale. Inbreeding than affects the coalescent process
only by the rescaling of the coalescent times by a unique factor. Alternatively, we
can capture this time rescaling via the definition of the coalescent effective population
size N c

e , which is the population size of a standard neutral Wright-Fisher model that
leads to the same coalescent. For partial selfing, in particular, we obtain

N (c)
e =

N

1 + f
.

Since N
(c)
e < N for f > 0, coalescence in partially selfing populations is faster since

pairs of genes only need to trace back to a common diploid ancestor and then have a
chance of (1 + f)/2 > 1/2 to coalesce instantaneously (i.e., within time T0). Selfing
thus leads to smaller coalescence trees and thus to reduced polymorphism, but not to
any deviations in the site-frequency spectrum relative to a standard random mating
population.
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2. A different situation arises if the sample from a partially selfing population contains
both allele copies from (some or all of) the diploid individuals. We then need to
take the fast time scale into account, which may lead to the immediate coalescence
of some the related genes. Since coalescence due to selfing occurs with probability
f per diploid, the number of these coalescent events in a sample of n diploids is
binomially distributed with parameters f and n. The probability that we have k fast
coalescent events is thus

Pr[k] =

(
n

k

)
fk(1− f)n−k .

If we ignore mutation on the fast time scale, each of these fast coalescent events leads
to a genotype that is represented twice in the sample. After the fast initial phase,
we thus have 2n− k lines of descent, of which k have two descendants and 2(n− k)
a single descendant. Since all these 2n − k lines sit in different individuals, they
now enter the coalescent process on the slow time scale as described above. In this
second phase, the haplotypes are thus once again connected by the standard neutral
Kingman coalescent with effective size N

(c)
e = N/(1 + f). Site frequency statistics

of the combined process running through both phases can easily be obtained by
combining the binomial sampling step with the statistics of the standard neutral
spectrum.

The coalescent for other types of inbreeding, such as partial sib mating, can be dealt with
in an analogous way. In more general, the separation of time scales with a fast phase
to describe coalescence processes within groups and a slow phase to describe coalescence
events among genes from different groups is a typical feature of structured coalescent events.
We will meet further examples in the following sections.

1.4 Spatial population structure

Spatial population structure is an ubiquitous property of populations that live in extended
areas. There are two main ways to incorporate spatial structure into a population genetic
model. Deme structured models assume that the total metapopulation can be divided into
discrete panmictic subpopulations that are connected by limited migration. Alternatively,
models in continuous space and time describe populations in a diffusion setting. The
crucial property of spatial models is that selection and/or mating occurs primarily among
individuals in the same spatial neighborhood. As in the case of inbreeding, we can define
a fixation index to measure the consequences of spatial structure on diversity patterns. In
this lecture, we will focus on discrete deme models. The crucial advantage of deme models
is that they allow for a study of population genealogies within the coalescent framework.
Although there is some recent progress to set up a coalescent theory in continuous space
(by Etheridge, Barton and coworkers) this is exceedingly complicated.
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Spatial structure and local competition

We will now define our standard model to describe spatial population structure. As-
sume that a monoecious, diploid population of size N is structured into d demes (patches,
colonies, islands) of constant size N1, . . . , Nd, with

∑
iNi = N . Generations are discrete

and the life cycle corresponds to the one of the structured Wright-Fisher model. We will
focus on neutral evolution, and, for the time being, will also ignore different allelic states
altogether. Dispersal is defined via the so-called backward migration matrix. For this, let
mij ≥ 0 designate the probability that a gamete in deme i after dispersion was produced
by an adult from deme j and mii = 1 −

∑
j 6=imij ≤ 1 (the mij are also called backward

migration fractions). Then
M = (mij)

is a stochastic matrix. It thus has λmax = 1 as largest eigenvalue with right eigenvector
(1, 1, . . . , 1)T . We will usually assume that M is ergodic, i.e., irreducible and aperiodic.
Irreducibility means that descendants from every individual are eventually able to reach
any other deme. Aperiodicity means that there are no periodic cycles. Aperiodicity is
already guaranteed if mii > 0 for at least one i, which is biologically trivial. The Perron-
Frobenius theorem then implies that λmax = 1 is simple and all other eigenvalues are
smaller in absolute value. Furthermore, M has a positive left eigenvector u for λmax,
which corresponds to the stationary distribution of the backward migration process. We
normalize u as a probability vector,

∑
i ui = 1. We assume that dispersal is followed by

random union of gametes in each deme.

• Backward migration is connected to forward migration rates qj→i (the probability
that an offspring of an adult individual from deme j migrates to deme i) as

mij =
Njqj→i∑
kNkqk→i

. (1.9)

Note that migration as defined here does not affect the (fixed) population sizes of the
demes. Forward migration of an offspring does not imply that the migrant will find
a spot in its target deme. The ratio accounts for sampling from the migrant pool.

• Let ci = Ni/N be the relative deme sizes and c = (c1, . . . , cd) the corresponding

row-vector. Then the components of c(t) = cMt, c
(t)
i , give the expected contributions

of deme-i ancestors t generations ago to the current population. If M is ergodic,
c(t) converges to the stationary distribution u as t → ∞. Demes contribute to this
distribution according to their size if and only if u = c. In this case, we have∑

k 6=j Nkmkj = Nj(1−mjj); in words: the expected number of migrants with parent
in deme j equals the expected number of immigrants into deme j. This is also called
conservative migration. An alternative interpretation of ui is the proportion of time
that a line of descent of any current individual will spend in deme i.

• The stationary distribution depends only on the relative migration rates. It thus
remains unchanged if we rescale all mij with i 6= j to αmij for some α > 0. To see this,
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note that the rescaled migration matrix can be written as M̃ = α(M−1) + 1, where
1 is the identity matrix. M̃ and M have the same eigenvectors with a transformed
spectrum λ̃ = α(λ − 1) + 1. In particular, λ̃max = λmax = 1. Rescaling by α only
changes the time-scale on which the stationary distribution is approached.

• We can calculate the single-generation coalescence probability for two randomly cho-
sen alleles as

pc,1 =
∑
i

(c
(1)
i )2 1

2Ni

and the inbreeding effective population size as the inverse N
(i)
e = 1/(2pc,1). For

conservative migration with u = c(1) = c, we obtain pc,1 = 1/(2N) and thus N
(i)
e =

N . This shows that population structure (even extremely strong one with vanishing

migration) can go entirely unnoticed by measures like N
(i)
e .

Similarly to the case of inbreeding, we can define a probability fi that two alleles taken
from deme i coalesce within this deme before emigrating backward in time. We obtain

fi =
m2
ii/(2Ni)

(1−m2
ii) +m2

ii/(2Ni)
. (1.10)

Coalescent time scale. To simplify the resulting expressions and to make further
progress, we switch to a continuous-time process on the so-called coalescent time scale.
Let t be time measured in generations and

t = b2Nτc , (1.11)

where τ is a continuous time parameter, N is population size, and bxc denotes the largest
integer smaller than x ∈ R. Let p0 be the probability (per generation) of a focal event of
interest in the genealogy and define a rescaled quantity P0 = 2Np0. Then the time t0 to
the focal event is geometrically distributed

Pr[t0 > t] =
(

1− p0

)t
=
(

1− P0

2N

)b2Nτc
= exp

[
− P0τ

]
+O[N−1] .

We can therefore define an exponentially distributed continuous random variable T0 for
the time to the focal event on the τ -scale,

Pr[T0 > τ ] = exp
[
− P0τ

]
,

which approximates the original distribution of t0 up to correction terms of the order of
1/N . The distribution of T0 (and the one of t0 to leading order) does not explicitly depend
on the population size, but only on the composite parameter P0 = 2Npo. Note that P0 is
no longer a probability like p0, but has the interpretation of a rate.

Applying this scaling procedure to backward migration, we define rescaled migration
rates Mij := 4Nmij (i 6= j). The factor of 4N instead of 2N is for reasons of consistency
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with the population genetic literature: Mij thus corresponds to twice the migration rate
on the coalescent time scale. The coalescent probability 1/(2Ni) in deme i rescales to a
rate of 2N/(2Ni) = 1/ci. In the continuous time process, events in the genealogy (here:
migration and coalescence) never happen at the same time. We can therefore define a
combined event (such as coalescence or migration) and obtain its rate simply by adding
the rates of the single events. Starting with a sample of size 2 in deme i, the total rate of
events is given by (1/ci) +

∑
j 6=iMij. The expected time to the first event (coalescence or

emigration) is given by the inverse of the total rate,

E[Ti,0] =
1

(1/ci) +
∑

j 6=iMij

. (1.12)

The probability that this event is coalescence rather then migration derives in continuous
time as the ratio of the coalescence rate to the total rate, thus

fi =
1/ci

(1/ci) +
∑

j 6=iMij

=
1

ci
∑

j 6=iMij + 1
, (1.13)

which corresponds to the discrete time expression (1.10) up to correction terms of order
N−1.

Pairwise coalescence times. For a general deme-structured model, we define Tij as the
coalescence time (on the coalescence time scale) for two random alleles taken from deme
i and j, respectively. We then find the following recursions for the expected values of the
Tij,

E[Tii] = E[Ti,0] +
1− fi∑
j 6=iMij

∑
j 6=i

MijE[Tij] , (1.14)

E[Tij] =
2∑

k 6=iMik +
∑

k 6=jMjk

+

∑
k 6=iMikE[Tkj] +

∑
k 6=jMjkE[Tik]∑

k 6=iMik +
∑

k 6=jMjk

for i 6= j . (1.15)

In general, this is a linear equation system of order d2. It can only be solved for some
special cases. We can further define coalescence times for a random pair of individuals
taken either from the same deme (TS) or from the total population (TT ) as

TS =
∑
i

ciTii ; TT =
∑
i,j

cicjTij . (1.16)

A measure for the strength of population structure is the given by

fST =
E[TT ]− E[TS]

E[TT ]
, (1.17)

which compares the coalescent times for pairs of genes from the same deme and the total
population, respectively. fST varies from 0 in the absence of structure to 1 for populations
with extreme structure, where the ancestries of genes from different demes are completely
separated.
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Symmetric island model

The symmetric island model makes two crucial assumptions:

1. All demes have equal size, Ni = N/d, or ci = 1/d, ∀i.

2. Backward migration among all demes is equal, Mij = M for i 6= j.

Biologically, we thus assume that there are no close or distant demes (no isolation by
distance). Individuals in the offspring generation are either drawn from local parents or
they immigrate from a migrant pool that is common to all islands. The total migration rate
(forward or backward) is (d−1)M . Under these assumptions, the recursions derived above
simplify considerably. We only need to distinguish coalescent times within a subpopulation,
TS = Tii and between demes, TB = Tij, i 6= j,

E[TS] =
1

d+ (d− 1)M
+ (1− d

d+ (d− 1)M
)E[TB] , (1.18)

E[TB] =
1

(d− 1)M
+

(d− 2)M E[TB] +M E[TS]

(d− 1)M
. (1.19)

This system is easily solved to give

E[TS] = 1 and E[TB] = 1 +
1

M
(1.20)

on the coalescence time scale of 2N generations. With TT = ((d − 1)TB + TS)/d and
E[TT ] = 1 + (d− 1)/(dM), we further obtain

fST =
(d− 1)/(dM)

1 + (d− 1)/(dM)
=

1

1 +Md/(d− 1)
≈ 1

1 +M
(1.21)

for many demes d � 1. We have fi = d/((d − 1)M + d) and so again fST ≈ fi, where
both are equal in the limit d → ∞ (when the probability for sampling twice from the
same deme in TT becomes negligible). From the measure of fST we see that population
structure is highly relevant whenever M / 1. On the other hand, it quickly becomes less
relevant (with fST → 0) once M � 1. Since M = 4Nm on the generation scale, one
typically concludes that strong population structure requires less that a single migrant
among subpopulations per generation, independently of the population size. Especially
for large populations this remarkable. Note, however, that the result only holds under the
assumptions of the symmetric island model.

Another remarkable result for the island model is that the expected coalescence time
for two individuals from the same deme does not depend on the population structure at
all. Two effects of population structure exactly cancel: On the one hand, low migration
rates enhance the probability that both lines coalesce locally before one of them emigrates;
on the other hand, it may take a long time for both lines to meet again in the same deme
once one line has migrated out. Indeed, this property can be proved for an even larger
class of models.
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Proposition The result E[TS] = 1, independently of the migration rates, holds in more
general for a model with (1) demes of equal size and (2a) symmetric migration mij = mji

– or even more generally (2b) for every doubly stochastic, ergodic matrix with a uniform
stationary distribution of the migration process.

Proof Consider the Markov process of backward migration only (without coalescence)
and follow the lines of descent of two individuals. Since the equilibrium distribution of the
backward process is uniform, each line will visit each deme with frequency 1/d. Since the
process is ergodic, also the probability that both ancestral lines are in the same deme is
1/d. Next, consider an independent Poisson process with rate d (= 1/(2N) in time units
of 2N). Then a fraction of 1/d of the Poisson events will fall into time intervals where
both lines are in the same deme. Thus, the expected time between those Poisson events
with lines in the same deme is d/d = 1. Because of the Markov property, the same holds
true for the expected time to the next such event, given that we both lines are currently
in the same (randomly chosen) deme. Since coalescence can be identified with the first
Poisson event where both lines are in the same deme, and since TS averages over demes,
we conclude that E[TS] = 1.

• Note that the proposition does not imply E[Tii] = E[Tjj] for i 6= j. Indeed, this is
already violated for three demes in a row with uniform migration between neighboring
demes. It follows, however, for all models with equivalent demes.

To derive the variances of TS and TB, we can again use the independence of the times to
consecutive events in the Markov process,

Var[TS] = Var[Ti,0] + (1− f)E[T 2
B] + f · 02 − ((1− f)E[TB] + f · 0)2

=
( 1

d+ (d− 1)M

)2

+
(d− 1)M

d+ (d− 1)M

(
Var[TB] +

d(1 + 1/M)2

d+ (d− 1)M

)
=
d(d− 1)(M + 2 + 1/M) + 1

(d+ (d− 1)M)2
+

(d− 1)M

d+ (d− 1)M
Var[TB] , (1.22)

Var[TB] =
1

M2
+ Var[TS] . (1.23)

This results in

Var[TS] = 1 +
2(d− 1)

dM
, (1.24)

Var[TB] =
1

M2
+ 1 +

2(d− 1)

dM
. (1.25)

The variance of TS is thus not independent of the population structure, but increases
∼ (1/M). This is expected: for very weak migration, both lines likely coalesce very quickly
in the same deme before a migration event happens. However, if migration happens first,
the expected coalescence time will be very long.
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1-dim stepping stone model

In order to introduce isolation by distance, we need a model with inhomogeneous migration:
migration between close patches will be higher than migration between distant patches.
The easiest way do this is to place demes of equal size on a regular grid or lattice and
only allow migration between nearest-neighbor demes. This is the so-called stepping-stone
model, first introduced by Kimura (1953). The easiest grid that can be imagined is just a
one-dimensional chain.

Suppose we have d demes, with N/d individuals each, connected in a chain. Migration
only occurs between neighboring demes, with (forward or backward) rate M in both direc-
tions. We still need to decide on the migration pattern for the boundary demes. The most
convenient choice are periodic boundary conditions, i.e., we close the chain by connecting
the d’th deme back to the first deme. As a consequence, all demes are fully equivalent.
Biologically, this scenario corresponds, for example, to a chain of shallow-water habitats
around an island or close to the shore of a lake. We also note that for very long chains we
should expect that the influence of the boundary conditions becomes negligible.

The coalescence time for a pair of alleles will only depend on their initial distance.
Accordingly, we denote with Ti the coalescence time of a pair with initial distance of i and
0 ≤ i ≤ d/2. We find the following recursion

E[T0] =
1 + 2ME[T1]

d+ 2M
(1.26)

E[Ti] =
1

2M
+

1

2

(
E[Ti+1] + E[Ti−1]

)
, 0 < i ≤ (d/2)− 1 . (1.27)

From the proposition above, we already know that E[T0] = 1 must hold. We thus have

E[T1] = 1 +
d− 1

2M

and in general

E[Tk] = 2E[Tk−1]− E[Tk−2]− 1

M
= 1 +

k(d− k)

2M
, (1.28)

which is easily proved by induction. Note that model and results reduce to the island
model for d ≤ 3. For a very long chain with d� k, we obtain E[Tk] ≈ 1 + kd/(2M). The
expected coalescence time thus increases approximately linearly with the distance. We can
define a distance-dependent fST to compare demes that are separated by a fixed difference,

fST (k) =
E[Tk]− E[T0]

E[Tk] + E[T0]
=

k(d− k)

4M + k(d− k)
. (1.29)

We can also derive an expected coalescent time for the total population,

E[TT ] = 1 +

∑(d−1)/2
k=1 k(d− k)

dM
= 1 +

(d− 1)(d+ 1)

12M
(1.30)
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(for odd d) and thus

fST =
E[TT ]− E[T0]

E[TT ]
=

(d− 1)(d+ 1)

12M + (d− 1)(d+ 1)
. (1.31)

Population structure across the whole habitat becomes irrelevant if M � d2, which is in
marked contrast to the symmetric island model for large d.

2-dim stepping-stone model

Results for a 2-dimensional stepping-stone model on a square lattice can also be found
(see Durrett 2008), but all require lengthly calculations. There are two main approaches,
one using Fourier methods (making use of the spatial homogeneity), the other one using
probabilistic arguments. For the latter, consider the problem on the torus (square lattice
with periodic boundary conditions) of size d = L2. For a random pair of individuals, we
can decompose the coalescence time into two parts,

TT = Ts + T0 ,

where the first part Ts measures the time to bring both individuals to the same deme, and
a second part T0 represents the time to coalescence once they are in the same deme (for
the first time). As in the 1-dim case, we already know that E[T0] = 1. For E[Ts], we note
that the migration rate M just scales the speed of the deme hopping, thus

E[Ts] =
E[Ks]

M
,

where Ks is the number of steps needed by a random walker to reach some deme 0 from a
random deme on the L×L torus. Cox and Durrett (2002) show that E[Ks] ∼ L2 log[L] ∼
d log[d] for large d = L2 (cf Durrett 2008, section 5.3.1). This shows that there are two
different limits of interest:

1. For M � d log[d], the time for migration to the same deme is irrelevant and the
positions of the demes for both individuals does not matter. We then have very weak
structure, indicated by fST = 0, and the coalescent is equivalent to the one of a
panmictic population.

2. For M � d log[d], we have strong population structure with fST > 0 and the time
to coalescent is dominated by the random walk of genealogical lines on the torus.

Comparing the critical migration rates Mc that distinguish weak and strong structure for
the 1-dim and 2-dim stepping stone models and the island model, we get Mc ∼ d2 (1 dim),
Mc ∼ d log[d] (2 dim), and Mc ∼ 1 for the island model. It should be noted, however, that
Mc measures migration between pairs of demes. The total migration rate per deme (to all
other demes) Mc,tot differs from Mc only by a constant factor for the stepping stone models,
but by a factor d for the island model. We thus have Mc,tot ∼ d2 (1 dim), Mc,tot ∼ d log[d]
(2 dim), and Mc,tot ∼ d (island), demonstrating a strong effect of isolation by distance in
one dimension, but a much weaker effect in two dimensions in the limit of large d.
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Strong migration limit

For general (ergodic) migration schemes, the linear equation system for the coalescence
time cannot usually be solved. We can make further progress, however, in the limit of
strong migration (the first limiting case for the 2-dimensional stepping-stone model above).
In this limit, we can assume that the system reaches the migration equilibrium (i.e., the
stationary distribution of the backward migration process) before the first coalescent event.
The coalescence probability of a pair then becomes independent of the initial state and
can be expressed as

pc,1 =
d∑
i=1

u2
i

2Ni

=
1

2N
(c)
e

, (1.32)

where ui is the probability of deme i in the stationary distribution. N
(c)
e is the coalescence

effective size. The corresponding coalescence rate on the time scale of 2N generations is∑
i(u

2
i /ci). For the coalescence time, we can ignore the time period until the migration

equilibrium is reached. Thus

E[TS] = E[TT ] =

( d∑
i=1

u2
i

ci

)−1

=

( d∑
i=1

ui

( ci
ui

)−1
)−1

<
d∑
i=1

ui
ci
ui

= 1 , (1.33)

since the weighted harmonic mean is always smaller than the arithmetic mean. We thus see
that population structure will usually lead to shorter coalescence times (or smaller effective
population sizes) in the strong migration limit, unless migration is conservative, ui = ci
(like, for example, in the stepping-stone model). Of course, we always have fST → 0 for
strong migration.

1.5 General structured coalescent

It is straightforward to generalize the coalescent process in a structured population from
just two alleles to a sample of size n. Assume that we have ni sequences sampled from
deme i and

∑
i ni = n. There are two types of events in the genealogy of the sample:

1. On the coalescent time scale (in units of 2N generations), the rate of coalescence
events in the ith deme is (

ni
2

)
1

ci
, (1.34)

2. On the same scale, the rate for backward migration from deme i to deme j is

2Nnimij =:
1

2
niMij , (1.35)

where Mi = 4Nmi as before. We can now construct the coalescent process as a continuous-
time Markov process on the state space of configurations with elements

n = (n1, n2, . . . , nd), ni ∈ N0 (1.36)



18 1 STRUCTURED POPULATIONS

with the transition rate matrix exp [τQ] with

Qn,n′ =



(
ni
2

)
1
ci

; n′ = n− ei

niMij/2 ; n′ = n− ei + ej

−
∑

i

(
niMi/2 +

(
ni
2

)
1
ci

)
; n = n′

0 ; else .

(1.37)

Here, ei = (0, 0, . . . , 1, 0, . . . , 0) with entry 1 in the ith position denotes the ith unit vector.
We can construct the genealogical process as follows:

1. For the process in state n, the time Tn to the next event is exponentially distributed
with parameter (−Qn,n), respectively, with expected value

E[Tn] =
−1

Qn,n

. (1.38)

2. The probability that this event is a coalescence event in deme i, or a backward
migration event from deme i to deme j is

Pr[coal. in i|n] =
−
(
ni
2

)
/ci

Qn,n

or Pr[mig. i→ j|n] =
−niMij/2

Qn,n

, (1.39)

respectively. The distribution of topologies follows from a random choice of lines
from deme i for either coalescence or migration.

Infinite islands model

It is even more difficult to obtain fully analytical results for a structured coalescent process
of a sample of size n than for just a pair of individuals. Even for a symmetric island model,
we need to distinguish a large number of states to account for the various ways how the
lines can be distributed over the islands (for 4 lines there are already 5 states). There
are two limits where the problem becomes manageable: one is the strong migration limit,
where the problem reduces to the panmictic case (and thus the Kingman coalescent) with a

changed effective population size N
(c)
e . We can derive N

(c)
e whenever we can determine the

stationary distribution of the backward migration process. The other limit is the co-called
infinite islands model due to John Wakeley (1998). The general idea is as follows: consider
the coalescent process with a sample taken from a finite number of demes. If the number
of demes is very large, we can separate the the total time to the most recent common
ancestor into two phases.

• During the first phase, called the scattering phase by Wakeley, lines in each local
deme either coalesce or leave the deme by backward migration. We assume that
every migration event leads to a previously unoccupied island. Consequently, we can
also ignore immigration of lines into the focal local deme during this time.
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• The second phase, called the collection phase, starts once there is no deme anymore
with more than a single line. It describes the coalescent process from this starting
condition, where events occur on a much larger time-scale as compared to the first
phase. It is convenient to start the detailed discussion with the second phase.

The collecting phase We start our process with n individuals in different demes. For
a very large number of demes, d� n, all ancestral lines will be in different demes for most
of the time. Only occasionally, with probability ∼ (n/d), two lines will meet in the same
deme. The probability that more than two lines meet in the same deme, or that there are
two or more demes with more than a single line is ∼ (n/d)2 and can be ignored for d→∞.
As a consequence, we only need to consider two states in the process: one with all lines in
different demes (state 1) and a second one with two lines in one deme and all other lines
in different demes (state 2). Call E[T1] and E[T2] the expected time to the next coalescent
event in state 1 or 2, respectively. Then

E[T2] =
1

d+ (d− 1)M
+

(d− 1)M

d+ (d− 1)M
E[T1]

d→∞−−−→ M

1 +M
E[T1] , (1.40)

E[T1] =
1

(n− 1)nM/2
+ E[T2] =

1

(n− 1)nM/2
+

M

1 +M
E[T1] . (1.41)

We thus obtain

E[T1] =
1 +M

(n− 1)nM/2
=
(

1 +
1

M

)(n
2

)−1

(1.42)

on a scale of 2N generations. Since each pair of lines will coalesce with the same probability,
this is just the normal Kingman coalescent on a larger time scale.

The scattering phase The coalescent process during this phase corresponds to the
so-called coalescent with killings, where lines can either coalesce or vanish (get “killed”)
by time-backward emigration. The problem is entirely analogous to the statistics of the
number of haplotypes for a standard neutral coalescent process and mutation according
to the infinite alleles model (where lines are “killed” by the mutation events, see lecture
Mathematical Population Genetics). The results therefore directly carry over, with the
population mutation parameter θ = 4Nu replaced by the migration parameter M = 4Nm.
In particular, the number Kn of alleles in a sample of size n from a single deme that go
back to different migration events is given by the Ewens’ sampling distribution,

P [Kn = k] =
Mk−1

(M + 1)(M + 2) · · · (M + n− 1)
· S(n, k) , (1.43)

where the S(n, k) denotes the Stirling numbers of the second kind. The distribution of size
classes of alleles that go back to each migration event is given by the other part of Ewens’
formula,

Pn[a1, . . . , ak|Kn = k] =
n!

S(n, k)

n∏
j=1

1

aj! jaj
, (1.44)
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where aj, 1 ≤ j ≤ k denotes the size of the jth class and
∑

j aj = n. The total time for
the scattering phase is only ∼ N/d and can be ignored relative to the time spent during
the collecting phase.

1.6 Structure and pattern

So far, we have discussed the effect of population structure on an expected neutral ge-
nealogy of a population sample. This is, we have been concerned with descent. We have
used two main measures. First, we have measured the effect of population structure on
the effective population size N

(c)
e that defines the time scale on which coalescence hap-

pens. Here, population structure is only one of many factors that can lead to an altered
N

(c)
e – and some patterns of (even strong) population structure do not affect the effective

population size. Second, we have defined the probabilities for identity by descent within
a group fi and the ratios of the coalescence times within and among groups, fIT or fST .
Any value of fIT or fST > 0 means that individuals (genes) in the total population are not
all exchangeable.

All our measures of population structure so far did not use the allelic state for their
definition. This is appropriate: after all, the presence or absence of a polymorphism de-
pends on many factors (such as the demographic history or the mutation rate) that should
not decide whether a population is more or less structured. However, the reverse direction
is certainly true: population structure can (and usually will) influence the typical poly-
morphism pattern. We can thus hope that we can at least obtain some information about
the structure from the pattern. This is of great practical relevance since polymorphism
patterns (other than genealogies) are directly observable. To understand the consequences
of population structure for polymorphism patterns, we need to add mutation to the ge-
nealogical process. As we will see below, this can be done in several ways and the result
depends on the mutation model that is used.

Heterozygosities and fixation indices

Before we discuss specific results, we will first describe the measures that are used to char-
acterize the polymorphism pattern in a structured population. By far the most widely
used measure is the heterozygosity H or its complement, the homozygosity F = 1 − H.
The homozygosity measures identity by state. As such, it is an observable that is closely
related to identify by descent - which is usually not an observable quantity. Similarly, het-
erozygosity measures difference in state. We have previously (in the lecture Mathematical
Population Genetics) defined H as the probability that two homologous alleles from the
population are different. In a structured diploid population this definition can be refined:

• On the highest level, the total heterozygosity HT is defined as the probability that
two randomly chosen alleles from the entire population are different (by state).

• On an intermediate level, we compare two randomly drawn alleles from the same
(randomly chosen) subpopulation or deme. They are different with probability HS,
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the subpopulation heterozygosity.

• On the lowest level, we define the individual heterozygosity HI as the probability that
the two homologous alleles of a single, randomly chosen individual are different.

With three different levels of heterozygosity, we can define three fixation indices or so-called
F -statistics (first introduced by Sewall Wright),

FIS =
HS −HI

HS

, FIT =
HT −HI

HT

, FST =
HT −HS

HT

. (1.45)

FIS, FIT , and FST detect differences in genetic variation due to non-random mating at
different levels. They are related as

(1− FIT ) = (1− FIS)(1− FST ) (1.46)

In words: The proportion of variation in the total population due to variation within an
individual equals the proportion of variation in a subpopulation due to variation within an
individual times the proportion of variation in the total population due to variation in the
subpopulation.

• The relation reflects the hierarchical structure of allelic groups: the two alleles in an
individual (a minimal family group) are always in the same neighborhood (or spatial
group).

• (1.46) implies that any two of the three measures contain the full information. The
commonly used measure to describe spatial population structure is FST , i.e., the
proportion of genetic variation among individuals drawn from all subpopulations that
is due to genetic differences between subpopulations. The commonly used measure to
describe inbreeding is FIS (if there is spatial structure FST > 0, otherwise FIT = FIS
are equivalent).

We can summarize several further basic properties of the fixation indices that hold inde-
pendently of a mutation model. Assume that the total population is partitioned into d
disjoint demes, where ci = Ni/N is the relative size of the ith deme,

∑
i ci = 1. Consider

a single locus with two alleles A and a. Let pi be the frequency of A in deme i.

• p̄ =
∑

i cipi is the frequency of A in the total population and we derive

HT = 2p̄(1− p̄) = 2
∑
i

cipi

(
1−

∑
i

cipi

)
; HS =

∑
i

ci2pi(1− pi) . (1.47)

Thus

HT −HS = 2
∑
i

cip
2
i − 2

(∑
i

cipi

)2

= 2
∑
i

ci

(
pi − p̄

)2

= 2Var[pi] (1.48)
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is just the variance of the allele frequency across demes (weighted by the deme size)
and

FST =
Var[pi]

p̄(1− p̄)
> 0 . (1.49)

This relation is sometimes used as an alternative definition of FST . It works for a
biallelic locus .

• Equation (1.49) shows that 0 is a lower bound for FST , which corresponds to no
differences in the heterozygosity among subpopulations and thus reflects absence of
population structure. Note that this means that HS cannot be larger than HT .
The opposite extreme, FST = 1, is reached if the total population is composed
out of homogeneous subpopulations (i.e., HS = 0). It reflects complete population
structure.

• Also for FIT and FIS the maximal value is 1, which is reached when all individuals are
homozygous (HI = 0). Hardy-Weinberg equilibrium in a subpopulation is indicated
by HS = HI and thus FIS = 0. In the opposite extreme, if all individuals are
heterozygous, we have HI = 1 and pi = 0.5 for a biallelic locus. Consequently,
HS = HT = 0.5 and FIS = FIT = −1. In contrast to FST , we thus find that
FIS and FIT can become negative. Technically, this difference is caused by a slight
difference in the sampling scheme that is used in both cases: Sampling is done with
replacement for HS and HT , i.e., the probability for an A allele in the second draw
does not depend on the result of the first draw. In contrast, sampling for HI is always
without replacement. In this case, if all individuals are heterozygous, the draw of
the first allele will determine the state of the second allele.

• Eq. (1.49) shows that FST is larger than zero as soon as there are any deviations of
the allele frequencies among demes. Assume that all subpopulations are in Hardy-
Weinberg equilibrium and thus FIS = 0. From (1.46) we see that nevertheless FIT =
FST > 0 in this case. I.e. there is an excess of homozygous individuals if we take a
sample from the total population. This is called the Wahlund effect (Wahlund 1928):
population structure has similar effects on FIT as preferred mating among relatives.
For this reason, populations need to be assessed for hidden spatial structure before
an observation of FIT > 0 can be interpreted as evidence for preferred mating among
relatives.

For an inbreeding model, we can relate FIT to the inbreeding coefficient f . To do this,
assume that we have two alleles segregating in the population at a given locus, A and a, with
frequencies p and q = 1− p, respectively. We obviously have HT = 2pq. For a population
in Hardy-Weinberg equilibrium, also HI = 2pq, but for an inbreeding population, HI will
deviate from this value. Imagine a population with inbreeding coefficient f . We can argue
as follows. If the total population size is much larger than the size of a family group,
coalescence within a family will typically happen quickly (if it happens). We can then
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ignore the rare event of a mutation on this part of the genealogy. In this case,

HI = (1− f)HT (1.50)

and

FIT =
HT −HI

HT

= f . (1.51)

The same holds for populations with additional spatial substructure, where HT is replaced
byHS. We obtain the equilibrium genotype distribution for inbreeding in a (sub)population
as

p2 + fpq for genotype AA,
2(1− f)pq for genotype Aa,
q2 + fpq for genotype aa.

We see that FIT just coincides with f in this case: Identity by descent (ibd) implies identity
by state in this approximation.

• Since FIT can readily be measured form data, it is frequently used as a proxy for
f , the level of inbreeding. Sometimes, (1.51) is even used as the definition of f .
However, this is generally not appropriate. Indeed, there can be other causes for the
distortion of Hardy-Weinberg proportions (such as selection) that have nothing to do
with inbreeding.

• As mentioned above, selection or disassortative mating can also lead to HI > HT and
a negative FIT . This, once again, highlights the difference to the inbreeding coefficient
f , which has been defined as a probability and is thus bound to be positive.

• With inbreeding, deviations from Hardy-Weinberg proportions can build up over
many generations and the equilibrium FIT = f is usually only reached in the limit
t → ∞ (with the exception of the most basic sperm-egg association model). In
contrast, it only takes a single generation of random mating to return to Hardy-
Weinberg proportions.

• Finally, note that inbreeding as such does not change the allele frequencies (it does not
induce selection), but will only regroup these alleles in the genotypes of individuals
and of family groups.

Analogous results hold for spatial structure and FST if the expected time to the first event
within a subpopulation is sufficiently short that mutations can be ignored during this time.
This typically holds true for the infinite-islands model.
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Mutation models: Infinite alleles and infinite sites

In our treatment so far, we have expressed the fixation indices as a function of the allele
frequencies across demes. This leaves the question open what these allele frequencies
are in the first place, for a given model of population structure. To capture population
structure with fixation indices, we therefore need to derive these measures directly from
the model parameters. To this end, we need to add mutation to our framework. In discrete
generations, one usually assumes that mutations occur with a certain probability in every
newborn individual. In the coalescent setting, we can simply assume that mutations occur
with a constant rate Θ/2 = 2Nu along each line of descent.

Infinite alleles. In the infinite alleles model, each mutation leads to a novel allele.
Two individuals will therefore be identical in state if and only if there is no mutation in
their genealogy up to their most recent common ancestor. If T is the time to the most
recent common ancestor, the number of mutations on the genealogy is Poisson distributed
with parameter ΘT . The Poisson probability for at least a single mutation, given T , is
1− exp[−ΘT ]. Averaging over T , we thus obtain in the panmictic case

H = E
[
1− exp[−ΘT ]

]
=

∫ ∞
0

[
1− exp[−ΘT ]

]
exp[−T ] dT =

Θ

Θ + 1
,

since T is exponentially distributed with parameter 1 (in coalescent scaling). For the
structured coalescent, we can make use of the fact that times to consecutive events in the
genealogy of the sample are independently exponentially distributed. If λ0 is the total rate
of events that can happen in the initial phase, we can express H as

H = 1− E
[

exp(−ΘT )
]

= 1−
∫ ∞

0

exp[−ΘT0]λ0 exp[−λ0T0] dT0(1− H̃) =
Θ + λ0H̃

Θ + λ0

,

where H̃ denotes the expected heterozygosity after the first event. For a structured popu-
lation with discrete demes, as introduced above, we denote the expected heterozygosity of
two alleles in deme i and deme j as Hij. We then find the following recursion:

Hii =
Θ +

∑
j 6=iMijHij

Θ + (1/ci) +
∑

j 6=iMij

(1.52)

Hij =
2Θ +

∑
k 6=iMikHkj +

∑
k 6=jMjkHik

2Θ +
∑

k 6=iMik +
∑

k 6=jMjk

. (1.53)

For the island model, in particular, this simplifies to

HS =
Θ + (d− 1)MHB

Θ + d+ (d− 1)M
(1.54)

HB =
Θ + (d− 2)MHB +MHS

Θ + (d− 1)M
. (1.55)
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The second equation can be rewritten as

HB =
Θ +MHS

Θ +M

and we obtain the solution

HS = Θ
Θ + dM

(Θ + d+Md)Θ + dM
, (1.56)

HB = Θ
Θ + d+ dM

(Θ +Md+ d)Θ + dM
= HS +

Θ

M + (1 +M)Θ + Θ2/d
(1.57)

and

HT = Θ
Θ + dM

(Θ + d+Md)Θ + dM
+
d− 1

d

Θ

M + (1 +M)Θ + Θ2/d
(1.58)

= Θ
Θ + dM + d− 1

(Θ + d+Md)Θ + dM
.

This results in an FST of

FST =
d− 1

Θ + dM + d− 1
=

1

1 +Md/(d− 1) + Θ/(d− 1)
. (1.59)

Infinite sites. For mutations at a single nucleotide position, we usually have Θ� 1.
This is the basis of the infinite sites model (ISM), where we assume that a single nucleotide
position is hit by a mutation at most once. In this limit, we find that the heterozygosities
are linear functions in the mutation parameter, i.e.,

H
(ISM)
ij = Θ

∂

∂Θ
Hij(Θ)

∣∣∣
Θ=0

= Θ
∂

∂Θ
E
[
1− exp[−ΘTij]

]
Θ=0

= Θ E[Tij] , (1.60)

where E[Tij] is the expected coalescence time of an ij pair. Thus also

F
(ISM)
ST =

H
(ISM)
T −H(ISM)

S

H
(ISM)
T

=
E[TT ]− E[TS]

E[TT ]
= fST . (1.61)

For the infinite sites model (and more generally in the limit of low mutation), the state-
based fixation index FST thus coincides with the descent-based measure fST for population
subdivision that we have defined earlier.

In general, we observe the following:

• FST is a monotonically decreasing function of the mutation parameter Θ. For small Θ,
FST captures the population structure as measured by fST . For larger Θ, mutations
diffuse this signal. For the island model, we see that this happens once Θ is of the
order of dM . In general, we can reason as follows: If Θ >

∑
jMij for some deme

i, then a line of descent started in this deme will likely mutate before it migrates to
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another deme. However, in the infinite alleles model, the history prior to the first
mutation event is irrelevant for the observed pattern (we can stop the line like in
the coalescent with killings). We thus see that the pattern becomes insensitive of
the migration pattern of the model. Consequently, the level of migration cannot be
estimated from polymorphism patterns.

• A consequence of the observation above is that FST is not a good measure of spatial
population structure if the differentiation is very strong, and thus M � 1. To
illustrate this point, consider a structured population with a large number of demes.
An arbitrary fraction of these demes is fixed for allele a and all others are fixed for
allele A (at least one deme for each allele). Then HS = 0 and HT > 0, thus FST = 1,
although there is no differentiation at all among most demes. We get the same result
as if each deme was fixed for a different allele.

• Alternatively, consider a scenario with very many alleles at a given locus. Assume
that we have complete differentiation across d demes of equal size, such that different
demes do not share any alleles at the locus. Then HT = (d− 1 + HS)/d and FST =
(d− 1)(1−HS)/(d− 1 +HS). Thus FST = 1 if HS = 0, but FST < 1 for HS > 0, and
even FST → 0 for HS → 1, although there is complete differentiation among demes.

• We conclude that FST is a meaningful measure of differentiation only if the level of
differentiation and diversity is low (i.e., for small Θ and large M). For high diversity
levels, alternative measures for population differentiation have been suggested. For
example, we can consider the ratio of the homozygosities instead of the heterozygosi-
ties. For the island model,

D =
1−HS

1−HT

=
dΘ + dM

Θ + dM
. (1.62)

For large M/Θ, D converges to 1 and is not informative. For small M/Θ, it ap-
proaches the number of demes d. In general, we find D → 1/

∑
i c

2
i in this limit,

which is the inverse of the probability that two random individuals are from the
same deme. Note that this quantity does indeed provide some information about
population structure. However, it is independent of the migration rate (which there-
fore cannot be estimated). Note that D does provide some information in both special
scenarios described above, unless HS → 1.

We note that explicit expressions for the expected heterozygosity (or homozygosity) can be
used to derive moments of the distribution of coalescence times (formally, 1−H(−Θ) is the
moment generating function or Laplace transform of the coalescence time). For example,
in the case of the island model,

E[TS] =
∂

∂Θ
HS

∣∣∣
Θ=0

= 1 , (1.63)

Var[TS] =
−∂2

∂Θ2
HS

∣∣∣
Θ=0
− 12 = 2

dM + d− 1

dM
− 1 = 1 +

2(d− 1)

dM
, (1.64)

confirming our earlier results.
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Estimating FST

We have defined the heterozygosities HS and HT as expected values for a given model.
From real data, we obtain estimators of these quantities. These estimators should average
over all sources of stochasticity, in particular due to mutation and the coalescent history.
This is best done by taking samples from many loci across the whole genome. On the level
of single nucleotide polymorphisms (SNPs), heterozygosity is also called nucleotide diversity
and denoted as π. To estimate π, we simply average the pairwise sequence differences across
the total sequenced region. For a panmictic population, the corresponding estimator π̂ is
a summary statistic of the site frequency spectrum. In a sample of size n,

π̂ =
1

L
(
n
2

) n−1∑
i=1

i(n− i)ξi , (1.65)

where L is the length of the sequence and ξi the number of polymorphisms with frequency
(i/n) of the derived allele (mutation of size i).

In a structured population, we can express the heterozygosities HT and HS as summary
statistics of the joint site-frequency spectrum. Suppose that we sample nk alleles from deme
k and n =

∑
k nk. Also suppose that we have a balanced sample, such that nk/n = Nk/N =

ck. Let ξi1,...,id be the number of polymorphic sites, where the derived allele appears ik times
in deme k, 1 ≤ k ≤ d and 0 ≤ ik ≤ nk. Then

π̂T =
1

L
(
n
2

) ∑
i1,...,id

ξi1,...,id

(∑
k

ik

)(
n−

∑
k

ik

)
(1.66)

and
π̂S =

∑
k

ckπ̂kk =
∑
k

ck

L
(
nk
2

) ξi1,...,id ik(nk − ik) . (1.67)

Given polymorphism data from a structured population, we can proceed as follows:

• Measure (estimators for) global an local heterozygosities.

• Test (globally and pairwise) whether HS and HT are significantly different.

• If yes: derive (estimators for) FST .

• See whether there is evidence for isolation by distance. If not: possibly use the island
model to estimate migration rates. Otherwise: try to fit more complex models (this
may require summary statistics other than FST ).

2 Selection footprints

We have seen how genealogies of population samples are affected by population demography
(lecture Mathematical Population Genetics) and population structure (in the first part of
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this lecture). So far, however, we have exclusively been concerned with neutral evolution.
We’ll now ask for the impact of natural selection. Doing so, we immediately face a problem:
coalescent theory does not easily generalize to selection models, where the state of alleles
with different fitness will affect the genealogical relationships. In particular, it is no longer
possible to construct the descent of an allele without the knowledge about its state. There
are two main ways how to proceed.

1. The ancestral selection graph (Neuhauser and Krone) proceeds by first producing a
graph that contains all potential genealogies of a biallelic locus under selection. In a
second step, the allelic state is decided and the actual genealogy is deduced.

2. An alternative approach is to determine the allele frequencies of the beneficial allele
through time in a first step (e.g. using a forward-in-time formalism). In a second
step, we can then model the genealogy of a population sample backward in time
conditioned on the trajectory of the beneficial allele. This second step makes use of
the structured coalescent.

2.1 The ancestral selection graph

We will briefly describe the main idea of the ancestral selection graph. Assume (for sim-
plicity) a haploid population of size 2N and a single locus under selection with two alleles
A and a. There is symmetric mutation at rate u from A to a and vice-versa. In the absence
of selection, we obtain a standard neutral (Kingman) coalescent, where the genealogy can
be constructed first and mutations (at rate Θ/2 = 2Nu) can be added in a second step.
Let us now assume that A and a differ in fitness, with an advantage of A that is given by a
selection coefficient s > 0. We can easily include selection forward in time. In a continuous
time framework (e.g., a Moran model), this can be done by assuming that A individuals are
subject to “extra birth” events at a constant rate s, where a single A offspring is produced
and replaces a randomly chosen individual from the population. In a Wright-Fisher model,
we can similarly assume that after each round of neutral reproduction all A individuals
additionally reproduce with probability s and replace randomly chosen types.

Let us now see how this process looks like in the backward (coalescent) direction. In
particular, we want to record the extra birth events in the genealogy. In the coalescent
scaling, we let s → 0 and N → ∞ such that α = 2Ns assumes a finite value. With this
scaling, we can, once again, ignore double events at a single time point. In particular, the
probability that coalescence occurs directly at an extra birth event is ∼ s/N = α/(2N2) per

generation, or ∼ α/N
N→∞−−−→ 0 in coalescent time units. Assume first that all individuals

are of A type (no mutation at the selected locus). We then simply have extra birth events
that occur with rate α for each lineage, independently of the coalescence events. Of course,
nothing of genealogical relevance happens at these events: alleles do not coalesce and they
do not change their type. Marking extra births is thus just an accounting exercise.

Now assume that both alleles A and a segregate in the population. Forward in time,
only A alleles have extra birth events. Backward in time, the rate of extra birth depends
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on the frequency pA of the allele in the population, which is not known. The crucial idea
of the ancestral selection graph is that we still assume a constant extra birth rate of α, as
if any individual in the population could give extra birth. However, we also account for
the possibility that this extra birth is not real. We proceed in the following steps:

1. Potential extra birth events happen at rate α per lineage. At each such event, we
assign two potential ancestors: one is called the incoming line. This will be the real
ancestor if and only if it has type A (and thus the capacity for extra birth). The
other one is called the continuing line and will be the ancestor if the incoming line is
not of type A. Since we do not know the state of the incoming line, we follow both
possibilities.

2. Backward in time, we thus obtain splitting events at rate α for each line. If there
are currently j lines, we have a total rate of αj for splitting and a rate of j(j − 1)/2
for coalescence. Instead of a simple tree, we obtain a graph that is generated by a
special type of a birth-death process. The important point is that we can generate
this graph without knowledge of the allelic state or the frequency of the A allele in
the population.

3. We follow this graph to the first time where only a single line exists. This is called
the ultimate ancestor (UA). Since the splitting rate is linear in the number of lines,
but the branching rate is quadratic, an ultimate ancestor will be reached in finite
time with probability one. However, as we will see below, this time can be very long
unless selection is very weak.

4. We can also place mutations on the graph with a rate of Θ/2 along each branch. At
a mutation, the state of the allele will change its type, either from A to a or from a
to A. (This simple procedure makes use of the symmetry of the mutation rates, but
also asymmetric mutation can be included: we assign potential mutations at a fixed
rate u that lead to states A and a with probabilities qa and (1− qa). Only mutations
that change the type will be effective mutations, which we can see after assigning the
state to all ancestral lines).

5. We now need to decide on the state of the ultimate ancestor. This can be done
by drawing from an equilibrium distribution. If we assume mutation-selection-drift
balance, this equilibrium can be derived from diffusion theory: the frequency x of
allele A has the density (cf. lecture Mathematical Population Genetics)

f(x) = CxΘ−1(1− x)(Θ−1) exp[αx] . (2.1)

6. In the last step, the states of all branches in the graph are decided and the real
ancestors at the branching (extra birth) events are resolved. As a result, the real
MRCA is usually reached much earlier that the UA. We now have generated a par-
ticular representative from the distribution of coalescent histories with selection. If
we want, we can add neutral mutations to the genealogy (at sites in tight linkage to
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the selected site). This is done by mutation dropping as in the case of the neutral
coalescent.

To get a better intuition of the ancestral selection graph, we add a few observations:

• The ancestral selection graph makes use of the fact that we can extend a neutral
genealogy to a larger sample size by just adding extra lines and letting them coalesce
into the genealogy of the smaller sample. At each splitting event, an extra individual
is added – but we only decide later, which one is the real ancestor and which one the
added line.

• For strong selection, every line will carry multiple “extra birth” events and it is very
likely that these are real ones. In this case, the state of an individual will mostly
depend on whether there is a mutation event from A to a prior to the first split event
(in backward direction). We then obtain the probability Θ/(Θ+2α) ≈ Θ/(2α) = u/s
for type a, consistent with the prediction of mutation-selection balance.

The so-called “size process” of the ancestral selection graph just counts the number of lines
contained in the graph at a given time, before allelic states are added. Among other things,
this size process determines the expected time to the ultimate ancestor. This is a relevant
quantity, for example, if we want to estimate the computational costs for simulations of
the ancestral selection graph. We prove the following theorem:

Theorem: Time to the ultimate ancestor The expected time TUA(i) to the ultimate
ancestor of an ancestral selection graph with split rate α per line and started with i lines is

E[TUA(i)] = 2
i∑

k=2

∞∑
`=0

(k − 2)!(2α)`

(`+ k)!
. (2.2)

Proof Mathematically, the size process is a continuous-time birth-death process with
constant birth rate α per line and size-dependent death rate (j− 1)/2 (per line if there are
j lines). We first consider the embedded jump chain of this process, i.e., the discrete-time
Markov chain that describes the state directly after each event, birth or death. The state
space of this process is j = 1, 2, 3, . . . and transitions can only occur among neighboring
states. An advantage of this simple structure of the transition matrix is that the process
can be mapped to a martingale by a simple transformation and we then can make use
of the strong properties of martingales. Since this is a frequent situation in population
genetic models, we will demonstrate the method for a general case.

Consider a Markov chain with random variable Xt and state space j = 1, 2, . . . . Tran-
sitions only occur among neighboring states with probabilities Pj→j+1 and Pj→j−1 =
1 − Pj→j+1. We can then define a corresponding martingale with a random variable
Yt = φ(Xt). The function φ(j) needs to fulfill the martingale property of a constant
expectation, i.e.,

E[Yt|Y0 = φ(j)] = E[Yt|X0 = j] = φ(j)
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for all j. This is the case if and only if

φ(j) = Pj→j+1 φ(j + 1) + Pj→j−1 φ(j − 1) . (2.3)

We are free to choose φ(1) = 0 and φ(2) = 1 and obtain the iteration

φ(j + 1)− φ(j) =
Pj→j−1

Pj→j+1

(
φ(j)− φ(j − 1)

)
=

j∏
k=2

Pk→k−1

Pk→k+1

,

and thus

φ(j) = 1 +

j−1∑
`=2

∏̀
k=2

Pk→k−1

Pk→k+1

.

Denote t∗ij = min[t : Xt = j|X0 = i] the first hitting time of state j for a process starting
in state i. For 1 ≤ k < i < j and all transition probabilities P`→`±1 > 0 for ` > 1 we have
min[t∗ij, t

∗
ik] <∞. For the martingale then follows

φ(i) = E[Yt|X0 = i]

= Pr[t∗ij < t∗ik] E[Yt|Xt∗ij
= j,X0 = i] + Pr[t∗ij > t∗ik] E[Yt|Xt∗ik

= k,X0 = i]

= Pr[t∗ij < t∗ik]φ(j) + (1− Pr[t∗ij < t∗ik])φ(k) (2.4)

and hence

Pr[t∗ij < t∗ik] =
φ(i)− φ(k)

φ(j)− φ(k)
.

With φ(1) = 0 we get for j > i

Pr[t∗ij < t∗i1] =
φ(i)

φ(j)
.

Now assume that φ(j)→∞ for j →∞ (or, more generally, that the φ(j) are unbounded).
Then we find for k ≤ i

Pr[t∗ik <∞] = 1 .

In particular, also the state k = 1 will be reached in finite time with probability 1. Define
the number of visits to state j before state k = 1 is reached from starting in state i as
nj(i). Assume first that the process starts in j. The probability to never return to state j
before state 1 is reached (thus, the total number of visits is nj(j) = 1) is to go to j − 1 in
the first step and then reach state 1 first, thus,

Pr[nj(j) = 1] = Pj→j−1

(
1− φ(j − 1)

φ(j)

)
.

Assume now that the process starts in state i. If the process ever reaches state j then the
number of visits to state j, will be geometrically distributed with mean 1/Pr[nj(j) = 1],
thus

E[nj(i)] =
Pr[t∗ij < t∗i1]

Pr[nj(j) = 1]
=


φ(j)

Pj→j−1

(
φ(j)−φ(j−1)

) ; j ≤ i

φ(i)

Pj→j−1

(
φ(j)−φ(j−1)

) ; j > i
. (2.5)
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Returning to the ancestral selection graph, we have

j → j + 1 at rate αj ; Pj→j+1 =
2α

2α + j − 1
, (2.6)

j → j − 1 at rate j(j − 1)/2 ; Pj→j−1 =
j − 1

2α + j − 1
. (2.7)

For the martingale transformation of the jump chain, we have φ(1) = 0 and φ(2) = 1 and

φ(i) = 1 +

j−1∑
`=2

∏̀
k=2

Pk→k−1

Pk→k+1

= 1 +
i−1∑
j=2

(j − 1)!

(2α)j−1
=

i∑
j=2

(j − 2)!

(2α)j−2
. (2.8)

We clearly have φ(i) → ∞ for i → ∞. Using our result (2.5) for nj above, we can now
obtain the total time Tj(i) that is spent with j ancestral lines before the ultimate ancestor
(= state 1) is reached in the original continuous-time process started with i lines. Noting
that the expected waiting time to leave a state is given by the inverse of the total rate, we
have

E[Tj(i)] =
E[nj(i)]

j(α + (j − 1)/2)
=

{
2
∑j
k=2(k−2)!(2α)j−k

j!
; j ≤ i

2
∑i
k=2(k−2)!(2α)j−k

j!
; j > i .

(2.9)

Finally, the total expected time to the ultimate ancestor derives as

E[TUA(i)] =
∞∑
j=2

E[Tj(i)] =
∞∑
j=2

min[i,j]∑
k=2

2(k − 2)!(2α)j−k

j!
(2.10)

= 2
i∑

k=2

∞∑
j=2

(k − 2)!(2α)j−k

j!
(2.11)

= 2
i∑

k=2

∞∑
`=0

(k − 2)!(2α)`

(`+ k)!
, (2.12)

which proves the theorem. For α = 0, this reduces to the result of the Kingman coalescent

i∑
k=2

2

k(k − 1)
< 2 ,

but for α > 0, we have

exp[2α]− 1− 2α

2α2
=
∞∑
`=0

2(2α)`

(`+ 2)!
≤ E[TUA(i)] ≤ 2(i− 1) exp[2α] <∞ .

We thus see that the expected time to the ultimate ancestor is always finite, but increases
exponentially with α.
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2.2 The conditioned coalescent

The ancestral selection graph offers a rigorous framework to include selection into the
coalescent process. However, it has several disadvantages. First, it is computationally
inconvenient for strong selection, which is the most interesting case biologically. And
second, it still requires the knowledge of the state of the ultimate ancestor (or, alternatively,
of all lines in the graph at some other time). For an equilibrium distribution, we can
(sometimes) determine this state by drawing from a known distribution. However, in
many cases we are interested in non-equilibrium scenarios.

The key idea of the ancestral selection graph has been to construct an extended graph of
equivalent lines in a first step, decide on the state later on, and deduce the real genealogy in
a final step. With the conditioned coalescent, we take the opposite route. We first construct
the frequency path of the selected allele in the population. This way, we distinguish two
(or more) classes of individuals in the population, depending on their allelic state at the
selected locus. Then, in a second step, we use techniques of the structured coalescent to
reconstruct the genealogy of a population sample conditioned on this frequency path.

Consider, once again, a single locus under selection with two alleles A and a with
mutation at rate u from a to A and back-mutation from A to a at rate v. The fitness
values of A and a are 1 + s and 1, respectively. Assume that we know the frequency xt of
allele A for all times t. Consider first a single individual of type A at some generation t.
The parent of this individual in the previous generation could have been an A individual
or a mutated a individual. Let δ be the timespan of one generation, such that xt−δ is the
frequency of A individuals in the previous generation. Then the proportion of A types in
generation t that come form an A-type parent in the previous generation relative to new
A-mutants (with a-type parent) is xt−δ(1 − v)(1 + s) : u(1 − xt−δ). We measure time in
units of 2N generations, such that δ = 1/(2N), and define Θu = 4Nu, Θv = 4Nv, and
α = 2Ns. In the coalescent scaling, we let N → ∞, or δ → 0, and s, u, v → 0, such that
Θu,Θv, α = const. We then obtain a backward mutation rate of

pu(t) = lim
δ→0

Θu

(
1− xt−δ

)
2xt−δ

(
1−Θvδ/2

)(
1 + αδ

)
+
(
Θuδ/2

)(
1− xt−δ

) =
Θu

(
1− xt

)
2xt

, (2.13)

where we assume that the path xt is continuous in this limit. For the Wright-Fisher model
or the Moran model this follows from diffusion theory. Mutation form A to a is analogous.
In addition, we need to account for coalescence events either among A individuals or
among a individuals. If the numbers of A and a individuals in our sample is nA and na,
respectively, we obtain the following rates for four types of events,

pcoal,A(t) =

(
nA
2

)
1

xt
; pcoal,a(t) =

(
na
2

)
1

1− xt
(2.14)

pu(t) =
nA Θu

(
1− xt

)
2xt

; pv(t) =
na Θv xt

2
(
1− xt

) . (2.15)

We make the following observations:
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• The conditioned coalescent with a biallelic locus under selection corresponds to a
structured coalescent with two islands, where the population sizes of the islands are
allowed to change in time. Here, 2Nxt and 2N(1−xt) are the sizes of the “A island”
and the “a island”, respectively. Mutation corresponds to migration, where Θu and
Θv are the forward rates and pu and pv the backward rates.

• Selection does not appear explicitly in the equations (2.14). As long as selection is
sufficiently weak such that terms ∼ su and ∼ s/N can be ignored (which is implicit
to the scaling limit), it does not affect the conditioned mutation or coalescence rates.
This holds even if selection changes with time and/or with the allele frequency, i.e.,
s = s(t, x). Of course, this does not mean that selection has no effect on the genealo-
gies: the effect of selection is included through its impact on the allele trajectory
xt.

• As always, we can add neutral mutation to the coalescent genealogy. Since neutral
mutation does not interfere with descent, this can be done by mutation dropping in
a last step. Neutral mutations occur at a constant rate Θn/2 per line, leading to
a Poisson distributed number of mutations with parameter LbΘn/2 for a branch of
length Lb.

• Clearly, we can extend the framework to more than two alleles at the selected locus.
It is also straightforward to add real spatial structure, as long as the allele frequencies
across all demes are known. With d islands and k alleles, we then obtain a structured
model with d · k classes.

So far, we have assumed that we directly investigate the genealogy of the selected locus
(i.e., the selected site itself and a region that is tightly liked to it). In praxis, this is
often not true. More frequently, we have a stretch of sequence from a neutral locus in the
neighborhood of the selected locus, with a recombination distance of r between both loci.
It is easy to include recombination into the conditioned coalescent framework and thus to
describe the genealogy of a linked neutral locus. We define a rescaled recombination rate
ρ = 2Nr, which is kept constant after letting N →∞. As always, this has the effect that
several events (recombination, mutation, and coalescence) do not happen simultaneously.
Recombination occurs at a constant rate ρ per line, but only a fraction of these events
matters for the genealogy: we only need to consider events where the genetic background
at the selected locus changes from A to a or vice-versa. Specifically, consider an individual
at time t that is associated with the A allele. Following the genealogy at the neutral locus
one generation back in time, there are two possibilities (ignoring new mutation): either
our focal individual derives from an A-parent that has not just recombined with an a
individual, or it derives form an a-parent that has recombined with an A individual. The
relative frequencies for these cases are xt−δ

(
1−r(1−xt−δ)

)
for the former and rxt−δ

(
1−xt−δ

)
for the latter. We thus obtain a backward recombination rate for A individuals to change



2.2 The conditioned coalescent 35

to the a background of (in units of 2N generations)

preco,A(t) = lim
δ→0

2Nrxt−δ
(
1− xt−δ

)
xt−δ

(
1− r(1− xt−δ)

)
+ rxt−δ

(
1− xt−δ

) = ρ
(
1− xt

)
.

For nA A alleles and na a alleles in a sample, we thus obtain

preco,A(t) = nAρ
(
1− xt

)
; preco,a(t) = naρ xt , (2.16)

which complement the rates for mutation and coalescence described above. Like mutation
at the selected locus, also recombination has the effect of migrating from one “island”
(genetic background) to the other.

To obtain explicit results, we now need to make assumptions about the trajectory
of the selected allele xt. In principle, the most appropriate framework to model allele
trajectories at a single locus is diffusion theory, which uses the same scaling assumptions
as the coalescent. In praxis, however, this is difficult: under the diffusion, xt is not a simple
function, but a stochastic path. We thus need to average over all these paths to obtain
a distribution of coalescent genealogies. There are two ways to proceed. Numerically, we
can rely on forward-time computer simulations of a finite Wright-Fisher population and
average over the resulting paths. Analytically, further progress is usually only possible in
the deterministic limit where xt is a unique function of time. We will consider the most
important examples below.

Balancing selection

The easiest scenario is the case of frequency-dependent selection, where balancing selective
forces keep the frequency of the A allele at an intermediate value. This is what happens,
for example, in a diploid population with overdominance at the selected locus, or due to
any mechanism that leads to a fitness advantage of the rare type (e.g. if predators specialize
on the more frequent type). If we ignore stochastic fluctuations in the deterministic limit,
we simply have xt = x̄ = const. In terms of the structured coalescent, we thus have a
scenario with two islands of constant size and constant, but generally asymmetric backward
migration rates (where M is twice the rate following the convention),

MA→a = (1− x̄)
(

2ρ+
Θu

x̄

)
; Ma→A = x̄

(
2ρ+

Θv

1− x̄

)
. (2.17)

Among other things, we can now calculate the expected coalescence time and heterozygosity
for a sample of size two taken from the linked neutral locus. We need to distinguish three
different states: both lines associated with allele a, both lines associated with A, and one
line each associated with a and A. For the heterozygosity, in particular, we obtain the
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following recursions (Θn = 4Nun is the neutral mutation rate),

HAA =
Θn

Θn +MA→a + (1/x̄)
+

MA→aHAa

Θn +MA→a + (1/x̄)
, (2.18)

HAa =
Θn

Θn + (MA→a +Ma→A)/2
+
MA→aHaa +Ma→AHAA

2Θn +MA→a +Ma→A
, (2.19)

Haa =
Θn

Θn +Ma→A + 1/(1− x̄)
+

Ma→AHAa

Θn +Ma→A + 1/(1− x̄)
. (2.20)

We obtain, for example,

HAa =
2Θn +MA→a

Θn+Ma→AHAa
Θn+Ma→A+1/(1−x̄)

+Ma→A
Θn+MA→aHAa

Θn+MA→a+(1/x̄)

2Θn +MA→a +Ma→A
, (2.21)

and thus

HAa =
2Θn + ΘnMA→a

Θn+Ma→A+1/(1−x̄)
+ ΘnMa→A

Θn+MA→a+(1/x̄)

2Θn + MA→a(Θn+1/(1−x̄))
Θn+Ma→A+1/(1−x̄)

+ Ma→A(Θn+(1/x̄))
Θn+MA→a+(1/x̄)

. (2.22)

For x̄ = 1/2 and Θu = Θv = Θ, we have two islands of equal size and symmetric migration
with M = ρ+ Θ and

HAa = Θn
Θn + 2Θ + 2ρ+ 2

Θn(Θn + 2Θ + 2ρ+ 2) + 2Θ + 2ρ
, (2.23)

in accordance with the result (1.57) of the symmetric island model. Usually, Θ << 1, but
ρ varies depending on the distance to the selected locus. We thus obtain the coalescent of
a strongly structured population in the direct neighborhood of the selected site, but only
a weak effect (corresponding to the strong migration limit) at a larger distance.

Background selection

As a second application, we consider a genealogy that is affected by recurrent deleterious
mutation in the genomic background. At first, we assume that there is no recombination
(such as in clonal reproduction). Each deleterious mutation occurs at a new site in the
genome and we assume that all mutations have the same effect s. The fitness of a genotype
then depends solely on the number of deleterious mutations it carries. We also assume
that mutational effects are independent. The fitness of the jth type then is wj = 1 − js.
Mutation (by one step from type j to type j + 1) occurs at a constant rate of u for all
types. Let fj be the frequency of the jth type in the population. We can then show

Lemma The Poisson

fj = exp[−u/s] (u/s)
j

j!
(2.24)

is the stationary distribution of the process.
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Proof We have the following system of differential equations

ḟ0 = (1− w̄)f0 − uf0 , (2.25)

ḟj = (wj − w̄)fj + u(fj−1 − fj) j ≥ 1 . (2.26)

In equilibrium (ḟj = 0), we immediately obtain the mean fitness w̄ = 1− u and

fj =
u

js
fj−1 =

(u/s)j

j!
f0 =

(u/s)j

j!

( ∞∑
k=0

(u/s)k

k!

)−1

=
(u/s)j

j!
exp[−(u/s)] , (2.27)

confirming the Poisson claim. It is easy to extend this derivation to a general epistatic
fitness function w(j) = wj.

• The classical approach is to address the problem in discrete time. Here, fitness is
measured on a direct scale and the effects of single mutations are multiplicative. This
is, the fitness of the jth type (j = 0, 1, 2, 3, . . . ) is wj = (1 − s)j. We assume that
the number of new mutations is Poisson distributed with parameter u. This is, the
probability of k new mutations is

mk = exp[−u]
uk

k!
(2.28)

We can then again show that the equilibrium distribution is Poisson as given by
(2.24). Note first that the mean fitness of the population is

w̄ =
∑
j

fjwj =
∑
j

exp[−u/s] (u/s)
j

j!
(1− s)j

= exp[−u]
∑
j

exp[−((u/s)− u)]
((u/s)− u)j

j!
= exp[−u] . (2.29)

With selection before new mutation, we then have

f ′j =

j∑
k=0

fk
wk
w̄
mj−k =

j∑
k=0

exp[−u/s] (u/s)
k

k!

(1− s)k

exp[−u]
exp[−u]

uj−k

(j − k)!

= exp[−u/s] 1

j!

j∑
k=0

j!

k!(j − k)!
((u/s)− u)kuj−k = exp[−u/s] (u/s)

j

j!
= fj . (2.30)

From the equilibrium distribution, we immediately obtain the backward mutation rates for
the coalescent. For continuous time, the backward rate from class j to class j− 1 becomes

2Nu
fj−1

fj
= 2Nu

j

u/s
= α · j , (2.31)
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with α = 2Ns. If we consider the process backward in time, we obviously have the zero-
mutation class as absorbing state. We first focus on the genealogy of a single individual.
We can derive the average time that is needed for an individual currently in class j to
reach absorption in class 0

E[Tj→0] =

j∑
k=1

1

kα
≈ log[j + 1]

α
. (2.32)

(The calculation for discrete time is a bit more complex, but yields similar results.) For
a sample of size two, we can estimate the probability that coalescence occurs before both
lines have reached the zero class. For this, assume that both individuals start out with j
mutations. The probability for coalescence in this class before either line migrates to class
j − 1 is

1/fj
2αj + 1/fj

=
1

2αj · fj + 1
=

1

2αj · (Θ/2α)j

j!
exp[−(Θ/2α)] + 1

This value is very small (and thus coalescence can be ignored) for all classes with fj �
1/(2αj). On the other hand, all classes with fj � 1 can be safely ignored in the model
anyway. We thus see that for moderately strong selection of α > 10, coalescence is very
unlikely before the lines have reached class 0. In other words: the mutations carried by
both individuals very likely have different origin. (This holds, at least, if Θ < 4α: for very
strong mutation, lines typically carry many mutations and can coalesce in a low mutation
class, such as f1, before f0 is reached). We conclude the following:

• For moderately strong selection α > 10 and Θ ≤ 4α, the background selection model
is governed by “strong migration”. All lines migrate back to the class j = 0, where
the genealogy is given by the standard neutral coalescent with a reduced effective
population size of Ne = N exp[−Θ/2α] (i.e., the size of the j = 0 class).

• For weak selection, α < 10, mutations are rare (and background selection has no
effect) if mutation is even weaker, Θ < α. However, if mutation is not weak, Θ > α,
background selection changes the coalescent histories in non-trivial ways.

Adding recombination To add recombination, we (first) make the simplifying assump-
tion that all background selection occurs at a single locus at a recombination distance r
from the neutral locus that is considered. At a recombination event, the genetic back-
ground at the selected locus is changed to a random background that is drawn from the
(equilibrium) population. In the backward direction, this induces migration rates of the
form (ρ = 2Nr)

preco,i→j = ρfj (2.33)

independently of the class prior to the recombination event. The effect is that the march
to class zero is interrupted and restarted at rate ρ. With mutation and recombination,



2.2 The conditioned coalescent 39

but without coalescence, we obtain the following system of differential equations in the
backward direction

ẋ0 = αx1 + ρ(f0 − x0) , (2.34)

ẋj = −αjxj + α(j + 1)xj+1 + ρ(fj − xj), . (2.35)

We see that there is no absorbing state anymore for ρ > 0. We obtain the equilibrium
distribution from the conditions ẋj = 0 leading to

x1 =
ρ

α
(x0 − f0) , (2.36)

xj =
j − 1

j
xj−1 +

ρ

jα
(xj−1 − fj−1) =

j − 1 + ρ/α

j
xj−1 −

ρ

jα
fj−1 , (2.37)

which can, in principle, be solved (resulting in a geometric mixture of Poisson distributions,
see Durrett). We restrict our treatment to the case of small u/s, where we can ignore all
classes beyond j = 1. We then have

x0 + x1 = x0 +
ρ

α
(x0 − f0) = 1 ⇒ x0 =

1 + (ρ/α)f0

1 + ρ/α
(2.38)

and

x1 =
ρ

α

1− f0

1 + (ρ/α)
≈ Θρ

2α(α + ρ)
. (2.39)

To include coalescence, we can argue as follows: in the presence of recombination, the
migration rates of the system are increased. We can thus safely assume the strong migration
limit in all cases where this limit is valid even for ρ = 0. The coalescence rate then follows
as

pcoal =
x2

0

f0

+
x2

1

f1

≈

(
1− Θρ

2α(α+ρ)

)2

1− (Θ/2α)
+

(
Θρ

2α(α+ρ)

)2

Θ/2α
.

≈
(
2α(α + ρ)−Θρ

)2
(1 + (Θ/2α))

(2α(α + ρ))2
+

2αΘρ2

(2α(α + ρ))2

≈ 1 +
−2(α + ρ)Θρ+ (α + ρ)2Θ + Θρ2

2α(α + ρ)2
= 1 +

Θ/2α

(1 + ρ/α)2
. (2.40)

The corresponding expected time is

E[Tcoal] =
1

pcoal

≈ 1− Θ/2α

(1 + ρ/α)2
. (2.41)

As expected, we get back to the result without background selection for ρ→∞.
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Background selection with multiple selected loci

As further extension of the background selection model, we consider that deleterious mu-
tation will occur at many loci along a recombining chromosome. We assume that mutation
happens at ` loci A1 to A` with arbitrary mutation rates u1 to u` and independent delete-
rious effects s1 to s`.

Lemma The distribution of the number of mutations at all loci Ai is independent Poisson
with parameter ui/si,

fn1,...,n` =
∏̀
i=1

fni =
∏̀
i=1

(ui/s)
ni

ni!
exp[−(ui/si)] , (2.42)

where fni is the marginal distribution at locus Ai.

Proof Note first that the assumption of independence of loci Ai in equilibrium implies
that the distribution is invariant under arbitrary modes of recombination among the loci.
Since mutation, selection, and recombination act independently in the continuous time
model, it is sufficient to show that the distribution is also invariant under mutation and
selection. We have

ḟ0,...,0 = (1− w̄)f0,...,0 −
(∑

i

ui

)
f0,...,0

and thus w̄ =
∑

i ui =: u. In linkage equilibrium, we can further consider the marginal
dynamics of the allele frequencies at locus i,

ḟni =
(
w̄ni − w̄

)
fni + ui

(
fni−1 − fni

)
.

With the marginal fitness, w̄ni = 1− nisi −
∑

j 6=i uj, and w̄ni − w̄ = ui − nisi, this reduces
to the dynamics in the single locus case and we can thus infer a Poisson equilibrium
distribution at Ai with parameter ui/si.

Backward process We now consider a neutral locus B that is linked to the selected loci
with a recombination rate of ρi between B and Ai. The first essential insight is:

Lemma Let Xni be the random variable of the marginal backward process that records only
the number of deleterious mutations (the mutation class) at locus Ai. Then the backward
dynamics for Xni is independent of the other selected loci Aj, j 6= i, and follows the model
with a single selected locus, with u, r, and s replaced by ui, ri, and si (or Θ, ρ, α replaced
by Θi, ρi, αi).
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Proof Since mutation and recombination are independent, we can consider them sepa-
rately. Backward mutation at locus Ai occurs at a rate

pmut[(. . . , ni, . . . )→ (. . . , ni − 1, . . . )] = 2Nui
f...,ni−1,...

f...,ni,...
= 2Nui

j

ui/si
= niαi

and is thus independent of the state at all other loci. Backward recombination replaces
the genotype of all loci beyond the crossover point by a randomly drawn genome from the
equilibrium distribution of the forward process. As we have seen above, this equilibrium has
product structure and the distribution at locus Ai is again independent of the other loci.
Note that this holds for any linkage structure and the position of B on the chromosome.
Also multiple crossing over or gene-conversion events are possible.

• We can thus describe the marginal dynamics for all Xni separately. Since ui corre-
spond only to the mutation rate at a single locus, the assumption of small ui/si(=
Θi/2αi) is usually justified. As above, we can thus focus on states with zero or one
mutation at each locus, ni ∈ {0, 1}, with equilibrium probability

xni=1 = 1− xni=0 =
(Θi/2αi)(ρi/αi)

(1 + ρi/αi)
.

• We approximate the distribution ofXn1,...,nl by a product of the marginal distributions

xn1,...,n` =
∏̀
i=1

xni .

This is appropriate if genotypes rarely carry multiple deleterious mutations at strongly
linked selected loci (ui/si small and /or recombination between neighboring selected
loci sufficiently large). In the strong migration limit, the coalescence rate then follows
as

pcoal =
∑

n1,...,n`=0,1

∏̀
i=1

x2
ni

fni
=
∏̀
i=1

(x2
ni=0

fni=0

+
x2
ni=1

fni=1

)
(2.43)

≈
∏̀
i=1

(
1 +

Θi/2αi
(1 + ρi/αi)2

)
≈ exp

[∑̀
i=1

Θi/2αi
(1 + ρi/αi)2

]
. (2.44)

Continuous chromosome We can assume that deleterious mutation occurs contin-
uously along the chromosome. For this, we define a mutation density θ(x), such that
the mutation rate for a locus that extends from genome position a to b is given by∫ b
a
θ(x)dx. We also define a local selection intensity α(x). To capture recombination,

we introduce the so-called map position M(x) for each genome position x (where x is mea-
sured on the physical scale per base pair). M(x) measures distance on a recombination



42 2 SELECTION FOOTPRINTS

scale (in Morgans), such that the recombination rate per time unit between genome po-
sitions x and y is |M(x) −M(y)| (for a constant recombination density ρ, in particular,
|M(x) −M(y)| = ρ|x − y|). Let L be the total length of the chromosome and let y be
the position of the neutral locus. Dissecting the genome in ever smaller units (= loci), Eq.
(2.44) then turns into

pcoal(y) = exp
[ ∫ L

0

θ(x)α(x)

2(α(x) + |M(x)−M(y)|)2
dx
]
. (2.45)

From modern data sets, we usually have information about the nucleotide diversity π(x)
(heterozygosity at the nucleotide level) along the genome. In the infinite sites limit, π(x)
is proportional to the expected coalescent time of a sequence pair, and thus

π(y)

π0(y)
= E[Tcoal(y)] =

1

pcoal(y)
= exp

[
−
∫ L

0

θ(x)α(x)

2(α(x) + |M(x)−M(y)|)2
dx
]
. (2.46)

where π0(y) is the neutral nucleotide diversity without background selection. In the stan-
dard neutral model, we have π0(y) = Θn(y) in the infinite sites model, where Θn(y) is the
neutral mutation rate in the region (including demography and population structure, π0(y)
is still proportional to Θn(y)).

Assume now that θ(x), α(x) and M(x) can be approximated by smooth (and differen-
tiable) functions. θ(x) and α(x) are bounded and M(x) is monotonically increasing with
x. Then the integral in Eq. (2.46) is dominated by an interval [y − W, y + W ] around
y. Assume that the mutation density and the selection strength can be approximated
by constant values in this interval, denoted as θy and αy. Assume further that we can
approximate M(x) ≈M(y) + ρy(x− y) in this region. Then

π(y)

π0(y)
≈ exp

[
−
∫ y+W

y−W

θyαy
2(αy + ρy|x− y|)2

dx
]

= exp
[
− 2

∫ W

0

θyαy
2(αy + ρyx)2

dx
]

= exp
[θy
ρy

( αy
αy + ρyW

− 1
)]

= exp
[ −θyW
αy + ρyW

]
≈ exp

[−θy
ρy

]
. (2.47)

• As expected, strong recombination (large ρy) reduces the local effect of background
selection and thus increases π(x) towards π0. We thus expect a positive correlation
of π(y) and ρy under background selection. This is indeed seen in many data sets.
In particular, nucleotide diversity is reduced in regions of low recombination, such as
around centromeres.

• We also see that the selection strength plays only a minor role and drops out for a
sufficiently large window size W . We obtain

π(y) ∼ Θn(y) · exp
[−θy
ρy

]
,

A positive correlation of π(y) and ρy could thus also result if ρ is positively correlated
with Θn (e.g., recombination is mutagenic) or if ρ is negatively correlated with the
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deleterious mutation density θ (e.g., the gene density is higher in low recombining
regions). Both these confounding factors need to be excluded before background
selection can be inferred.

Muller’s ratchet

In our treatment of background selection, we have used a deterministic theory to derive
the equilibrium allele frequencies for the genotype classes Ai. In particular, the Poisson
distribution predicts that the frequency of the mutation-free class is

f0 = exp[−(u/s)] .

In a recombining population, the equilibrium distribution is a product over independent
loci and the relevant mutation rate is that of a gene locus (or recombinational unit). With
u ≈ 10−4 (per gene) and a typical s ≈ 0.002, we have a frequency of exp[−0.5] ≈ 0.6
for the fittest class at each locus. Importantly, wildtype alleles won’t get lost in a large
finite population, despite of unidirectional mutation. In a large genome, genotypes will
(almost) necessarily have deleterious mutations at some positions, but fitter combinations
can always be recovered by appropriate recombination and are not lost.

In contrast, for a non-recombining population, the relevant unit (locus) is the whole
genome. With u ≈ 0.1, we have a frequency of exp[−50] ≈ 2 · 10−22. Even in a huge
population, this class will almost never be represented in a population: it is quickly lost
due to genetic drift; and without recombination and back mutation it cannot be recovered
anymore. As it turn out, this has drastic consequences for the dynamics. If the class with
zero mutations vanishes, genomes with a single mutation form a new “fittest class”. If
we set up a deterministic system with f0 = 0 as initial condition, we obtain exactly same
dynamics, but with the roles of the classes shifted by one and with a new mean fitness
w̄ = 1 − u − s. This means, however, that now f1 takes the “quasi equilibrium” value
that we had determined for f0 before. Hence, also the one-mutant class gets lost and the
process is iterated, lowering the mean fitness with each step. Once the mean fitness is so
low that the population cannot sustain itself anymore (w̄ < 0 in continuous time), it will
die out.

This is the famous process of Muller’s ratchet that describes an extinction risk of non-
recombining populations. The ratchet can move only in one direction and “clicks” every
time a fitness class has died out. There is considerable theory to describe the click-rate of
the ratchet and to determine factors that can stop the process. This is generally difficult
(and partially unsolved) and beyond the scope of this lecture. Insights include:

• Even very low recombination rates are sufficient to stop the ratchet. Many asexual
organisms (such as bacteria) have mechanisms that allow them to recombine at a low
rate. This can be sufficient to guarantee their long-term survival.

• Other mechanisms to decrease or stop the rate of the ratchet are beneficial mutations
and positive epistasis among deleterious mutations.
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• Finally, the ratchet may be stopped if the effective deleterious mutation rate goes
down during the process. A good example is the human Y-chromosome that effec-
tively evolves without recombination. Although the human Y- and X-chromosomes
have probably derived from a common ancestor chromosome, the Y-chromosome to-
day only carries ∼ 78 genes, compared to > 1000 on the X-chromosome. We conclude
that most original genes on the Y chromosome have already been lost, probably due
to a ratchet-like process. Today, the effective deleterious mutation rate on the Y-
chromosome is already much reduced. Also, since weakly selected genes will be lost
most easily, the average selection pressure is increased. Both factors contribute to a
slowing of further degradation.

2.3 Selective Sweeps

In the previous sections, we have been concerned with the impact of balancing selection
and purifying selection (recurrent deleterious mutation) on coalescent histories. We will
now turn to the third mode: positive selection. The paradigmatic scenario is one of a
new beneficial mutation that arises in the population at some time t0, quickly increases in
frequency and fixes in the population. In contrast to balancing selection and background
selection, we thus do not consider an equilibrium, but a transient phenomenon.

Consider a haploid population of size 2N and a single locus under selection with two
alleles a and A. The fitness values are 1 and 1 + s, respectively. Assume that a single new
A mutant appears in the population at time t0 = 0. Let x(t) be the frequency of A in the
population at time t. As in the previous cases, the simplest approach is to model selection
as a deterministic process. In continuous time, x(t) changes under selection according to
the logistic differential equation

ẋ(t) = α · x(t)
(
1− x(t)

)
; x(0) = x0 , (2.48)

where α = 2Ns and time is measured on a scale of 2N generations. This is solved by

x(t) =
x0

x0 + (1− x0) exp[−αt]
. (2.49)

The resulting model for the genetic footprint of positive selection is also called the logistic
sweep model. The time tε for a logistic sweep to reach frequency x(tε) = 1− ε from a small
starting frequency x0 = ε is

1− ε =
ε

ε+ (1− ε) exp[−α tε]
⇒ tε =

2 log[(1/ε)− 1]

α
≈ −2 log[ε]

α
. (2.50)

With a single new mutant, the canonical choice is ε = 1/(2N), but due to stochastic
effects the fixation time will be somewhat shortened and a different choice gives more
accurate results. We can argue as follows: The deterministic differential equation captures
the average frequency change of the stochastic trajectory, given the current frequency,
ẋ = f(x). For any frequency at a distance from the boundaries at x = 1 and x = 0
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this is a reasonable approximation. For very small x-values, however, we need to account
for the fact that a stochastic reduction of the frequency may lead to a loss of the allele
from the population. However, for our model of a sweeping allele, we discard these cases
and only consider the frequency paths that reach fixation at x = 1. This conditioning on
non-extinction leads to an effective acceleration of ẋ relative to the deterministic model for
small x. Similarly, for large x near one, a small stochastic fluctuation is sufficient to drive
the allele to fixation. As a consequence, the stochastic process reaches fixation earlier (on
average) than predicted by the neutral path. To include this effect into our model, note
that the total fixation time of a neutral allele in a population of size 2N is 4N generations,
corresponding to tfix,n = 2 on the coalescent scale. In more general, the average time to
reach a frequency x0 is 2x0. We thus see that the conditioned process for the neutral allele
is faster than the one of the beneficial allele as predicted by the deterministic model if

ẋ = αx(1− x) <
1

2

which will (approximately) be the case for x < 1/(2α). Since the fixation process of a
beneficial allele should always be as least as fast as the one of a neutral allele, we replace
the logistic increase by a linear increase as in the neutral case for x < 1/(2α) and for
x > 1− 1/(2α). This results in

tfix =
2 + 2 log[2α− 1]

α
=

2 log[α]

α
+O

[
α−1
]
. (2.51)

Hitchhiking Consider now a neutral locus that is linked to the selected locus with a
recombination rate r per generation or ρ = 2Nr per 2N generations. Assume that two
alleles B and b segregate at the neutral locus. Let pbA(t) be the frequency of the b allele
among haplotypes with the A allele at the selected locus, and pba(t) the frequency of b on
a-haplotypes. The total frequency of b is thus pb(t) = pbA(t)x(t) + pba(t)

(
1 − x(t)

)
. We

then obtain the following differential equation for the conditioned frequencies (forward in
time):

ṗbA(t) = ρ
(
1− x(t)

)(
pba(t)− pbA(t)

)
, (2.52)

ṗba(t) = ρ · x(t)
(
pbA(t)− pba(t)

)
. (2.53)

We thus have
∂

∂t

(
pbA(t)− pba(t)

)
= −ρ

(
pbA(t)− pba(t)

)
(2.54)

and hence
pbA(t)− pba(t) =

(
pbA(0)− pba(0)

)
exp[−ρt] . (2.55)

With this we obtain the general solution

pbA(t) = pbA(0) + ρ
(
pba(0)− pbA(0)

) ∫ t

0

(1− x(t′)) exp[−ρt′] dt′ (2.56)

pba(t) = pba(0) + ρ
(
pbA(0)− pba(0)

) ∫ t

0

x(t′) exp[−ρt′] dt′ (2.57)
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In particular, with the choice pbA(0) = 0 and pba(0) = 1 we get

Pρ := pbA(tfix) = ρ

∫ tfix

0

(
1− x(t)

)
exp[−ρt] dt . (2.58)

By integrating in parts, and with x(0) = 0 and x(tfix) = 1, we also have

Pρ = 1−
∫ tfix

0

ẋ(t′) exp[−ρt′] dt′ = 1−
∫ 1

0

exp[−ρt(x)] dx . (2.59)

For given x(t) (logistic or combination linear/logistic, see above), or inverse function t(x),
the integral can be evaluated numerically.

Backward in time, Pρ represents the probability that an individual in the A population
at time tfix comes from the a-population at time t = 0. Since at time tfix all of the
population is in the A part (or almost all of the population if we take tfix as end of the
logistic phase), this corresponds to the probability that a line of decent from an individual
sampled at the time of fixation of the beneficial allele escapes the sweep by coalescing into
the a background. Alternatively, the line of descent will run back to the founder individual
of the beneficial mutation. Any allele B that is initially associated with the beneficial A
and that is found at frequency pBa in the a background will hitchhike to a higher frequency
of

1− Pρ + Pρ pBa = pBa + (1− Pρ)(1− pBa) .

Although Eq. (2.58) and (2.59) are exact and explicit expressions for the escape probability,
the integral is inconvenient to evaluate. Simpler approximate expression can be obtained
if we consider the process in the backward direction, as expressed by the following Lemma.

Lemma Consider a logistic selective sweep for a strongly selected allele A. Then the
escape probability to leading order in the selection strength α reads

Pρ = 1− exp
[−ρ log[α]

α

]
+O

[ ρ
α

]
. (2.60)

Proof Note first that backward in time, the differential equation for the probability qA
that a line of descent is in the A population reads

q̇A = −ρ(1− x(t))qA + ρ · x(t)(1− qA) = ρ[x(t)− qA] , (2.61)

where

preco,A(t) = ρ
(
1− x(t)

)
and preco,a(t) = ρ · x(t) (2.62)

are the backward recombination rates. Although we cannot solve Eq. (2.61) directly, we
can easily derive the probability that a line in the A background will stay there all the
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time and never recombine to the a background. As complement, we obtain the probability
that a line of descent will recombine at least once,

P+
ρ = 1− exp

[
− ρ

∫ tfix

0

(
1− x(t)

)
dt
]

= 1− exp[−ρtfix/2]

= 1− exp
[−ρ log[α]

α

]
+O

[ ρ
α

]
, (2.63)

where we use the symmetry x(t) = 1− x(tfix − t) of the deterministic trajectory. Clearly,
P+
ρ is an upper bound for the escape probability Pρ. To estimate the accuracy of this

approximation, we can estimate the probability of at least a double recombination event
of a single line, from A to a and back to A,

P++
ρ = 1− exp

[
− ρ2

∫ tfix

0

∫ t1

0

x(t2)
(
1− x(t1)

)
dt2 dt1

]
. (2.64)

Let tε be the time when x(t) reaches some small value ε with 1/(2α) < ε < 1/2. Because
of symmetry, we also have x(tfix − tε) = 1 − ε. We can then split the double integral as
follows,

ρ2

∫ tfix

0

∫ t1

0

x(t2)
(
1− x(t1)

)
dt2 dt1

= ρ2

[ ∫ tfix−tε

tε

∫ t1

0

+

∫ tε

0

∫ t1

0

+

∫ tfix

tfix−tε

∫ t1

0

]
x(t2)

(
1− x(t1)

)
dt2 dt1

≤ ρ2

[ ∫ tfix−tε

tε

∫ t1

0

1

4
dt2 dt1 +

∫ tε

0

∫ t1

0

ε dt2 dt1 +

∫ tfix

tfix−tε

∫ t1

0

ε dt2 dt1

]
=
ρ2

8
tfix

(
tfix − 2tε

)
+ ρ2εtεtfix ≤

ρ2

2α2
log
[
2α− 1

]
log
[
(1/ε)− 1

]
+
ρ2 2ε(log[2α− 1])2

α2
.

since tfix − 2tε = 2 log[(1/ε) − 1]/α is the time for the process to increase form ε to 1 − ε
and tε ≤ tfix/2. With the choice ε = 1/ log[α], we thus have

P++
ρ ≤

ρ2
(

log[2α]
)2

α2

(
log
[

log[α]
]

2 log[2α]
+

2

log[α]
+O

[
log[α]−1

])
. (2.65)

We see that P++
ρ is of lower order than P+

ρ for large α. To leading order, we can thus can
ignore multiple recombination events during the sweep and thus have Pρ ∼ P+

ρ , proving
the Lemma.

• We need to have (ρ log[α])/α of the order unity to obtain a non-trivial P+
ρ (i.e.,

0 � P+
ρ � 1). The Lemma shows that double recombinations can be ignored

in this case if α is sufficiently large. From the proof we see that the factor that
controls double recombinations scales like log[log[α]]/ log[α] and is thus very weak.
This leads to the question how good the approximation is for practical applications
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(α of 102 − 104). However, direct comparison of the approximation with the exact
result Eq. (2.58) shows that it generally performs quite well. Note also that the
approximation improves for a larger sample. For a sample of size n, (ρ log[α])/α of
order 1/n is sufficient to see lines that escape the sweep. The probability for double
recombination in at least one line is then suppressed by another factor 1/n.

Next, consider a pair of individuals sampled at fixation of the beneficial allele. We are
interested in the coalescence probability of the corresponding lines of descent during the
selective sweep. Our central result is the following Theorem.

Theorem: Star-like approximation To leading order for strong selection, the proba-
bility that two lines of descent do not coalesce during the time tfix of the selective sweep,
but to go back to different ancestors at time t0 is

p22 = 1− (1− Pρ)2 +O
[ ρ
α

]
= Pρ(2− Pρ) +O

[ ρ
α

]
≈ 1− exp

[−2ρ log[α]

α

]
. (2.66)

Proof If both lines go back to the founder of the beneficial mutation, an event with
probability (1 − Pρ)

2, they will certainly coalesce within the time tfix. If only one line
goes back to the origin of the beneficial allele, an event with probability 2Pρ(1−Pρ), both
lines clearly do not coalesce. Finally, both lines escape with probability P 2

ρ . In this case,
they can either coalesce or not coalesce. To prove the Theorem, we need to show that
the coalescence probability in this case is of lower order for large α and therefore does not
affect Eq. (2.66). Remember that the coalescence rates at time t in the A and a population
are

pcoal,A =
1

x(t)
; pcoal,a =

1

1− x(t)
. (2.67)

We now need to distinguish two cases:

1. Either both lines recombine from A to a independently and then coalesce in the a
background. The probability of this event can be estimated as

Prc ≤ 2ρ2

∫ tfix

0

∫ t1

0

∫ t2

0

(
1− x(t1)

)(
1− x(t2)

)
1− x(t3)

dt3 dt2 dt1 (2.68)

≤ 2ρ2

∫ tfix

0

∫ t1

0

∫ t2

0

(
1− x(t1)

)
dt3 dt2 dt1 = ρ2

∫ tfix

0

t21
(
1− x(t1)

)
dt1 (2.69)

≤ ρ2t3fix

6
≈ 4ρ2 log3[α]

3α3
(2.70)

In the region of interest with a non-trivial Pρ this is smaller than Pρ by a factor of
log[α]/α and can thus be ignored for large α.

2. The alternative is that the two lines coalesce first in the A-domain and recombine
to the a background later. This case is a bit more complex since we need to take
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the initial linear increase of the trajectory due to genetic drift, x(t) = t/2, explicitly
into account. The logistic part sets in at t0 = 1/α, where the trajectory has reached
frequency x0 = 1/(2α). We obtain

Pcr ≤ ρ

∫ tfix

0

∫ t1

0

(
1− x(t2)

)
x(t1)

dt2 dt1 = ρ

[ ∫ t0

0

∫ t1

0

+

∫ tfix

t0

∫ t1

0

](
1− x(t2)

)
x(t1)

dt2 dt1

≤ ρ

[ ∫ t0

0

∫ t1

0

1

t1/2
dt2 dt1 +

∫ tfix

t0

∫ t1

0

(
1 + 2α exp

[
− α(t1 − t0)

])
dt2 dt1

]
≤ 2ρt0 +

ρt2fix

2
+

2ρ

α

(
1 + αt0

)
≤ 6ρ

α
+O

[ρ(log[α])2

α2

]
. (2.71)

In the relevant parameter range, with Pρ between 0 and 1, this probability is smaller
than Pρ by a factor ∼ 1/(log[α]). We thus see that this term is also small for large
α, proving the Theorem.

• We can easily extend the reasoning of the Theorem to a sample of size n: each line
goes back to the origin of the beneficial mutation with probability 1−Pρ = ερ/α and
escapes with probability Pρ. All lines with the founder of the beneficial mutation as
ancestor coalesce, and to leading order in α all escape lines will not coalesce. The
probability that k out of n lines remain after the sweep is thus

pnk ≈
(

n

k − 1

)
P k−1
ρ (1− Pρ)n−k+1 for k < n , (2.72)

pnn ≈ P n
ρ + nP n−1

ρ (1− Pρ) for k = n . (2.73)

This scheme, where the fate of individual lines (i.e., escape the sweep or not) is
independent is also called the star-like approximation.

• For two lines that are caught in the sweep we can calculate the distribution for the
coalescence time and the frequency of the A allele at this time. The probability that
both lines coalesce before time t1 > t0 = 1/α is

exp
[
−
∫ tfix

t1

1

x(t)
dt
]
≈ exp

[
−
∫ tfix

t1

(
1 + 2α exp[−α(t− t0)]

)
dt
]

= exp
[
t1 − tfix − 2 exp

[
− α(t1 − t0)

]
+ 2 exp

[
− α(tfix − t0)

]]
≈ exp

[
− 2 exp

[
− α(t1 − t0)

]
+O

[
log[α]/α

]]
.

For t1 = t0, we see that there is a probability of exp[−2] ≈ 0.135 that they coalesce
before time t0, i.e., in the short initial drift-phase of the selective sweep with frequency
of the A allele x < 1/(2α). We also find that there is a 90% chance that coalescence
happens before time t1 = 4/α, corresponding to a frequency of x < 10/α. Analogous
results hold for larger samples. For very strong selection, all coalescence thus happens
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almost directly at the point of origin of the beneficial allele, giving rise to a star-
like shape of the genealogy. For more realistic values, such as α = 1000, we see
that coalescence occurs typically at low frequencies (x < 1%) and relatively early
(4/(2 log[2α] + 2) ≈ 0.23, i.e., with probability 0.9 in the first 23% of the total sweep
time), but not exactly star-like.

• The factor in Eq. (2.71) suppressing escape from A to a of a pair of lines that has
already coalesced in the A domain is only logarithmic in α. The problem gets worse
with larger sample sizes: Since the coalescence probability scales with n2, but re-
combination only with n, the probability for escape of coalesced lines relative to
single-line escape increases proportionally to n. As a consequence, the star-like ap-
proximation, Eqs. (2.66) and (2.72), although true for α → ∞, is only of modest
quality for typical selection strengths, in particular if the sample size is large. How-
ever, they are usually sufficient to demonstrate the qualitative effects of a selective
sweep. Improved analytical approximations based on a stochastic sweep model are
available (e.g. Durett & Schweinsberg; Etheridge, Pfaffelhuber, Wakolbinger), but
problems with large samples remain.

Assume now that we sample two individuals τ generations after fixation of the beneficial
allele. Consider the nucleotide diversity π at a neutral locus linked to the selected locus
with recombination distance ρ. We can prove the following

Theorem In the infinite sites model, we have

E[π] = Θ
(

1− (1− p22) exp[−τ ]
)
. (2.74)

Proof Note first that for the infinite-sites model E[π] = Θ · E[Ts], where Ts is the pair-
coalescence time in the presence of the sweep. Let E[T0] be the expected coalescence
time without a sweep. The genealogies with and without a sweep will be different if and
only if (i) coalescence does not occur before time τ and (ii) the two lines coalesce during
the sweep. (i) is an event with probability exp[−τ ] and (ii) is an independent event of
probability (1− p22). Further, if coalescence has not happened until time τ , the remaining
expected time to coalescence in the case without sweep is E[T0|T0 > τ ]− τ = 1 because of
the memoryless property of the Markov process and E[T0] = 1. We thus have

E[Ts] = 1−
(
E[T0]−E[Ts]

)
= 1−(1−p22) exp[−τ ]

(
E[T0|T0 > τ ]−τ

)
= 1−(1−p22) exp[−τ ]

which proves the claim.

Recap: Estimators for Θ and text statistics

Most tests based on the site frequency spectrum use a common principle: they compare
two estimators of the population mutation parameter Θ, that should be equal under the
standard neutral model. Significant deviations lead to rejection of standard neutrality.
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The scenarios of population demography and selection lead to typical patterns for these
deviations.

Estimators Let Si be the number of polymorphic sites of size i in the sample. Under
standard neutrality, we can define an unbiased estimator Θ̂i for each size class,

E[Si] =
Θ

i
−→ Θ̂i := i · Si . (2.75)

Widely used estimators are linear combinations of the Θ̂i. They can be distinguished
according to the relative weight that is put on a certain class. The most important ones
are the following:

1. Watterson’s estimator,

Θ̂W :=
S

an
=

1

an

n−1∑
i=1

Si =
1

an

∑
1≤i≤n/2

S̃i , (2.76)

uses the total number of segregating sites and puts an equal weight on each mutation
class. The last equation expresses Θ̂W in terms of frequencies of the folded spectrum.
The distribution of Θ̂W is independent of coalescent topologies, but only depends on
the coalescent times.

2. Let πij be the number of differences among two sequences i and j from our sample.
We have E[πij] = E[S(n = 2)] = Θ. Averaging over all pairs, this leads to the
diversity-based estimator (or Tajima’s estimator),

Θ̂π :=
2

n(n− 1)

∑
i<j

πij . (2.77)

We can also express Θ̂π in terms of the (folded) frequency spectrum as follows,

Θ̂π =

(
n

2

)−1 n−1∑
i=1

i(n− i)Si =

(
n

2

)−1 ∑
1≤i≤n/2

i(n− i)S̃i . (2.78)

Θ̂π puts the highest weight on classes with an intermediate frequency. It also depends
on the distribution of tree topologies.

3. Fay and Wu’s estimator,

Θ̂H :=

(
n

2

)−1 n−1∑
i=1

i2Si , (2.79)

puts a hight weight on mutation classes of the unfolded spectrum with a high fre-
quency of the derived allele. It is not a summary statistic of the folded spectrum,
but requires knowledge of the ancestral state.
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4. The singleton estimator Θ̂s uses the singletons of the folded spectrum,

Θ̂s :=
n− 1

n

(
S1 + Sn−1

)
=
n− 1

n
S̃1 . (2.80)

It has all its weight at both ends of the unfolded spectrum.

Test statistics

1. Tajima’s D,

DT :=
Θ̂π − Θ̂W√

Var[Θ̂π − Θ̂W]
. (2.81)

DT is negative if we have an excess of very low or very high frequency alleles, whereas
it is positive if many sites segregate at intermediate frequencies.

2. Fu and Li’s D,

DFL :=
Θ̂W − Θ̂s√

Var[Θ̂W − Θ̂s]
(2.82)

DFL is an extreme version of Tajima’s D. It focuses entirely on the signal from
singletons of the folded spectrum. It is more powerful for the type of pattern that it
is constructed for (excess of singletons), but also less general and more vulnerable to
sequencing errors. The power also decreases with larger samples.

3. Fay and Wu’s H,

HFW :=
Θ̂π − Θ̂H√

Var[Θ̂π − Θ̂H]
. (2.83)

HFW focuses on high-frequency derived alleles. In contrast to DT and DFL, it weighs
singletons in the opposite direction to high-frequency derived alleles. The main idea
(and advantage) of HFW is that it distinguishes positive selection from population
growth. A (potential) problem is that it requires reliable estimates of the ancestral
state from one or several outgroups.

The footprint of positive selection

We have now sufficient information to get an overview of the “average” footprint of recent
positive selection. Consider a sample of size n taken from a neutral locus at recombination
distance ρ from the selected site directly at the time of fixation of the beneficial allele
(τ = 0 in Eq. 2.74). We assume that the time of the sweep is sufficiently short that neutral
mutation during this time can be ignored. Let E0[Θπ] be the expected nucleotide diversity
without a sweep. We then have

E[Θπ]

E0[Θπ]
= p22 = 1− (1− Pρ)2 = 1− exp

[
− 2ρ log[α]/α

]
(2.84)



2.3 Selective Sweeps 53

• We have E[Θπ]/E0[Θπ] = 0 for ρ = 0, and a linear increase with slope 2 log[α]/α for
small ρ.

• The width of the sweep region (on a recombination scale) scales like ∼ α/ log[α].
In more general, this scale is given by the inverse of the fixation time. For ρ =
0.5α/ log[α], we are back to 63.2% of the background diversity, for ρ = α/ log[α] at
86.5%, and for ρ = 2α/ log[α] at 98.2%. For α = 1000 we have α/ log[α] ≈ 145. For
fruitflies, r ≈ 10−8 per base pair and 2N ≈ 106; we thus have a width of the sweep
region extending over 14.5 kb. This should be compared to typical gene lengths of
1− 10 kb.

• Note that footprints of single selective sweeps do not look like the “average” pattern.
In particular, there is a broad central region without any recombination lines. The
width of this central region is exponentially distributed with mean (and standard
deviation)

α

n log[α]
.

To each side of the center, the median distance to the first recombination event is

(
1− Pρ

)n
=

1

2
⇒ ρ = α log[2]/

(
2n log[α]

)
A typical size of this central region is thus several kb. On both sides, the central region
is followed by a region with a single escape line. These width of these flanking regions
is also exponentially distributed: in the star-like approximation, the corresponding
mean/median width is the same as the central region, with the number of lines n
reduced by one.

For the expected number of segregating sites, we get from the simple star-like approxima-
tion:

E[ΘW ] =
n∑
k=2

pnkΘ
ak
an

(2.85)

where ak =
∑k−1

i=1 (1/i) and once again mutation during the sweep is ignored.

• For small ρ, E[ΘW ] increases like

E[ΘW ]

E0[ΘW ]
=

E[ΘW ]

Θ
≈ pn2

a2

an
=
n log[α]

anα
ρ+O

[
ρ2
]
.

For n > 2, the increase is thus faster than the one of π: we thus expect to have
π − ΘW < 0. For n = 10 (n = 100) we get a recovery of: 70.6% (82.2%) for
ρ = α/(2 log[α]); 87.3% (91.3%) for ρ = α/ log[α]; 97.6% (97.4%) for ρ = 2α/ log[α].
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• Of course, the central region without variation and ΘW = Θπ = 0 is the same one as
derived above. In the flanking regions with a single escape line, we have

E[ΘW ] =
Θ

an

[
=

Θ

2.83
for n = 10

]
; E[Θπ] =

2Θ

n

[
=

Θ

5
for n = 10

]
. (2.86)

We thus again see a much faster initial increase to the standard neutral expectation
of ΘW relative to Θπ. In more general, if there are 1 < k < n lines left after the
sweep,

E[ΘW ] =
Θ ak
an

,

E[Θπ] =

(
(k − 1)(n− k + 1) + (k − 1)(k − 2)/2

)
Θ

n(n− 1)/2
=

(k − 1)(2n− k)Θ

n(n− 1)
.

(For E[Θπ], we sum over two component: pairwise differences among the k − 1 lines
that have recombined out of the sweep and the differences of these k−1 lines to each
of the n− k + 1 lines that coalesce in the sweep.)

• Finally, we can derive expected number of mutations of size i for the star-like logistic
sweep model (once again without new mutations after the sweep). Assume that k
lines survive the sweep. The expected frequency of mutations of size i before the
sweep is E ′[Si] = Θ/i for 1 ≤ i ≤ k − 1. After the sweep, we need to account for the
n − k + 1 lines that coalesce in the sweep: all mutations that sit on the ancestor of
these lines will appear n− k + 1 times in our sample. For a given mutation of size i
before the sweep, there is thus a chance of i/k that it will appear as a mutation of
size n − k + i after the sweep. With probability (k − i)/k it will still be seen as a
mutation of size i. Summarizing we have, conditional on k lines surviving the sweep,

E[Si] =



Θ
i
− Θ

k
i ≤ min[k − 1, n− k]

Θ(k−i)
k·i + Θ

k
= Θ

i
n− k + 1 ≤ i ≤ k − 1

0 k ≤ i ≤ n− k
Θ
k

i ≥ max[k, n− k + 1] .

(2.87)

For the folded spectrum, where mutations with size i and n − i are collected in the
same class, we obtain

E[S̃i] =


Θ
i

i ≤ min[k − 1, n− k]

Θ
i

+ Θ
n−i n− k + 1 ≤ i ≤ n

2

0 k ≤ i ≤ n
2
.

(2.88)

The spectrum clearly shows the deficit of intermediate frequency polymorphism for
k ≤ n/2. The unfolded spectrum also shows a surplus of high-frequency derived
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alleles relative the standard neutral case, in particular for small k. By averaging
over k with the weights pnk = pnk(ρ), we can also obtain the expected spectrum as a
function of the recombination distance to the selected site:

E[Si|ρ] =
n∑

k=i+1

pnk(ρ)
(Θ

i
− Θ

k

)
+

n∑
k=n−i+1

pnk(ρ)
Θ

k
. (2.89)

• Above we have assumed that the frequency spectrum in the absence of a selective
sweep is the standard neutral one. An alternative is that we do not make this
assumption, but start with an empirical spectrum that has been measured from
genome-wide data. This is the approach that is taken in the sweepfinder software
(Nielsen et al. 2005). Assume that the frequency of mutations of size i in a sample
of size n is qi, i < n (this is the information we have from data). Then the frequency
of mutations of size j among the k lines that still exist at the start of the sweep is

qj,k =
n−1∑
i=j

qi

(
i
j

)(
n−i
k−j

)(
n
k

) . (2.90)

Then the normalized frequency spectrum after a sweep follows as

E[Si|ρ]∑n−1
i=1 E[Si|ρ]

=
n∑

k=i+1

pnk(ρ)qi,k
k − i
k

+
n∑

k=n−i+1

pnk(ρ)qi−n+k,k
i− n+ k

k
. (2.91)

With qi,k = 1/i for all k we reproduce formula (2.89) above (up to normalization) [cf
formula 6 in Nielsen et al., with k → k + 1 due to slightly different definition of the
pnk].

2.4 Soft selective sweeps

So far, we have assumed that positive selection acts on a single copy of a new beneficial
mutation: adaptation is mutation limited. In many cases, however, multiple copies of
the later-beneficial allele may already be present in the population when the selection
pressure sets in. In this case, the population can adapt form this so-called standing genetic
variation. Alternatively, the beneficial allele can also arise in the population multiple time
by recurrent mutation (or also by immigration) during the sweep phase. Both processes
are not captured in the basic sweep model and lead to deviating selective footprints called
soft selective sweeps (in contrast to the classical hard sweeps).

Adaptation from standing genetic variation In the context of the star-like approx-
imation, we have seen that lineages that coalesce during a (hard) selective sweep will
typically do so at very low frequency of the beneficial allele. If adaptation occurs from
standing genetic variation (SGV), this means that coalescence will likely happen prior to
the environmental change at time t0 unless the allele frequency x0 at this time is even



56 2 SELECTION FOOTPRINTS

smaller. If we assume that each of the 2Nx0 copies in the SGV either establishes or gets
lost with an independent probability 2sb (where sb is the selection coefficient), we can
employ a Poisson distribution to obtain

Psgv(x0) ≈ 1− exp[−4Nx0sb] (2.92)

for the probability of successful adaptation from the SGV

Pmult(x0) ≈ 1− (1 + 4Nx0sb) exp[−4Nx0sb]

1− exp[−4Nx0sb]
(2.93)

for the probability that more than a single allele from the SGV contributes to the adap-
tation, conditioned on that successful adaptation occurs in the first place. If the later-
beneficial allele segregates in the population in mutation-selection-drift balance prior to
the environmental change, we need to integrate these expressions over corresponding sta-
tionary allele frequency distribution. For previously neutral derived allele, we have

f(x0) ≈ ΘxΘ−1
0

resulting in

Psgv ≈ Θ log[4Nsb] ; Pmult ≈ 1− 1

log[4Nsb]

in the limit of small Θ. We see that, for neutral SGV, conditioned on that a sweep from
the SGV occurs at all this sweep will typically lead to the fixation of multiple copies.

The footprint of a sweep from the SGV depends on the allele frequency trajectory xt of
the beneficial allele, for neutral SGV, xt changes only due to drift prior to the environmental
change. In a simple model, we can assume that xt is constant during this time. We can
then describe the genealogy of all lines that are still caught in the sweep at time t0 by an
island model with migration rates (backward in time),

preco,A = nAρ
(
1− x0

)
; preco,a = naρ x0 ,

see Eq. (2.16). Since the A island is small, we can ignore recombination (migration) back
to this island, preco,a ≈ 0. The dynamics is then equivalent to the “scattering phase”
of the infinite-islands model, with migration replaced by recombination. In contrast to
the star-like model, the rate of recombination relative to coalescence does not depend on
time. There is thus no particular time that would favor one over the other more than
any other time: both occur in parallel. This implies that groups of coalesced lineages
can recombine and escape the A island just like single lineages. As in the infinite island
model, the distribution of the number and size of these groups is given by the Ewens
sampling formula (1.43). The net effect of the “standing phase” of the genealogy is thus
that recombination lines can also produce intermediate-frequency polymorphism for a soft
sweep from SGV. The pattern of the sweep in summary statistics like Θ̂π, Θ̂W , or Tajima’s
DT is therefore less pronounced than for a hard sweep.
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Adaptation from recurrent new mutation So far, we have assumed that the benefi-
cial sweep allele has a single origin by mutation, either before or after the onset of positive
selection. However, with recurrent mutation, it can also originate multiple times. We have
already discussed the effect of mutation at the selected locus above in the case of balancing
selection. In the genealogy, recurrent mutation is a second way (in addition to recombi-
nation) how lineages can cross from one genomic background to the other. If Θu is the
mutation parameter to describe mutation to the beneficial allele and Θv is the parameter
of back migration, we have

pu(t) =
nA Θu

(
1− xt

)
2xt

; pv(t) =
na Θv xt

2
(
1− xt

) .
In the case of a selective sweep, all lineages are initially on the A island. We see that the
rate of crossing over to the ancestral background due to recurrent beneficial mutation is
∼ (1 − xt)/xt and therefore increases strongly as xt becomes small – just like coalescence
events, pcoal(t) =

(
nA
2

)
/xt. For a fast sweep (strong selection), both recurrent mutation and

coalescence events before xt is small. In this case case, we can also ignore the probability
that a lineage will ever migrate back (via back mutation) onto the A island once it has
emigrated. Consider the genealogy of a sample of size n and assume that recombination
can be ignored (i.e., very close to the selected site or in a clonal population). Initially, all
lines are associated with the A allele and we have two events, coalescence and emigration
due to recurrent mutation. In the relevant region for small xt the probability that the next
event is mutation is

pu(t)

pu(t) + pcoal(t)
=

Θu

Θu + n− 1
. (2.94)

This ratio is independent of the allele trajectory xt and therefore does not depend on time
nor on the selection strength (which enters through the shape of xt). In more general,
recurrent beneficial mutation leads to multiple haplotypes form the pre-sweep population
in a pot-sweep sample (i.e., a soft sweep) if any recurrent mutation event occurs before
the most recent common ancestor is reached. The probability for a soft sweep therefore
follows as

Psoft(n) = 1−
n−1∏
i=1

i

Θu + i
≈ Θu log[n] . (2.95)

We see that soft sweeps from recurrent mutation become relevant when Θu = 4Neu is of
the order of 0.1. This is typically the case when either the effective population size Ne

is large (e.g., fruitflies or microbial populations) or if the allelic mutation rate is large.
The latter is the case, in particular, for adaptive loss-of-function mutations, when shutting
down a gene function (that is e.g., exploited by a parasite) is beneficial. Obviously, there
are many ways to disrupt a gene, leading to a high mutation rate u.

Since the sequence of coalescence and emigration events does not depend on xt for a
recurrent-mutation soft sweep, the number and sizes of groups of lines that escape the
sweep is once again given by the Ewens sampling formula, just like in the case of escape
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by recombination at a SGV soft sweep. Therefore, also the consequences on the summary
statistics of the site-frequency spectrum (such as Θ̂π, Θ̂W or DT ) are also the same. In
particular, recurrent-mutation soft sweeps produce more intermediate-frequency polymor-
phism than classical hard sweeps and are therefore more difficult to detect by tests that
are based on allele frequencies. Still, the sweep pattern is not the same as in the SGV case.
Haplotypes that are introduced by recombination are only visible in the flanking region
of the selected locus (beyond the recombination breakpoint). In contrast haplotypes from
recurrent mutation run right across the selected site. The produce a clear pattern that can
be detected with haplotype tests that go beyond measures of allele frequencies at single
sites.

3 Selection in structured populations

In all the lecture so far, our aim has been to describe neutral genetic variation and how
it is shaped by either spatial population structure or by selection. As a tool, we have
mostly used the structured coalescent process. However, we have never directly studied
the frequencies of alleles under selection in a structured population. This is of importance,
in particular, since selection coefficients can change among demes. We then need to know
how selection and migration (or gene-flow) act together to determine the frequencies of
selected alleles.

We will address this problem with the island model. However, in contrast to our
treatment of neutral variation, we will choose a forward-time formalism and ignore genetic
drift. This is a reasonable approximation for selected alleles if selection is much stronger
than drift, i.e., 2Ns� 1. We will always assume this in the following and set N →∞. For
simplicity, we will also ignore new mutation and focus on the interaction of migration and
selection. Again, this is often appropriate since mutation is usually a weak force. There
is a large body of literature on island models with inhomogeneous selection, starting with
Haldane and Wright. We will only discuss the most basic model, where selection acts on
a single locus.

We consider a population that is distributed over d discrete demes and evolves in
discrete generations. The life cycle starts at the zygote state. Selection on a single diploid
locus with two alleles A and a acts in each deme prior to migration. Finally, random mating
(within each deme) and reproduction produces a new generation of zygotes in Hardy-
Weinberg equilibrium, separately in all demes. The fitness values for the genotypes AA,
Aa, and aa in deme i are denoted as wi(AA), wi(Aa), and wi(aa), respectively. Migration
is defined via an ergodic backward migration matrix M with entries mij giving the fraction
of individuals (zygotes) in deme i with parents in deme j. In particular, mii = 1−

∑
jmij.

The migration-selection dynamics is then given by the following equation system

p′i =
∑
j

mij pj
wj
w̄j

, 1 ≤ i ≤ d , (3.1)
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where wj is the marginal fitness in deme j,

wj = wj(AA) pj + wj(Aa) (1− pj) ,

and

w̄j = wj(AA)p2
j + wj(Aa)2pj(1− pj) + wj(aa)(1− pj)2

is the local mean fitness. We see that the dynamics only depends on ratios of fitness values.
We can thus set one fitness value per deme to 1 without restriction. In the following, we
will usually choose wj(aA) = 1.

3.1 Protected polymorphism

We are interested in the the long-term fate of the alleles A and a under the dynamics.
Essential information about this long-term behavior is given by the equilibrium points
p′i = pi and their stability. As it turns out, however, we can only explicitly derive these
equilibria for some particular cases. A somewhat simpler problem is the identification
of conditions that guarantee the maintenance of a genetic polymorphism. A so called
protected polymorphism results if the dynamics implies an increase of the allele frequency
once this frequency becomes sufficiently low. Note that p0 = (p1, . . . , pd) := (0, . . . , 0)
(absence of the A allele from all demes) and p1 := (1, . . . , 1) (fixation of A) are always
equilibria of the dynamical system. Mathematically, instability of equilibrium p0 is a
sufficient condition for maintenance of theA allele. Analogously, maintenance of the a
allele is guaranteed if p1 is unstable. We thus need to determine the stability of these two
monomorphic (boundary) equilibria. We can express the Jacobian of (3.1) as

J = MD .

At p0, we have

Dij =
∂[piwi/w̄i])

∂pj

∣∣∣
p0

= δij
wi(aA)

wi(aa)
=

δij
wi(aa)

.

Thus,

Jij =
mij

wj(aa)
> 0 .

Since M is ergodic and Jk ≥ (M/maxj[wj(aa)])k, also the Jacobian matrix J is ergodic.
Let λmax be the maximal eigenvalue of J . According to the Perron-Frobenius theorem, it
is always real and uniquely determined. Allele A is protected if λmax > 1 and it is not
protected if λmax < 1 (for λmax = 1 higher-order terms matter). The maximal eigenvalue
satisfies

min
i

∑
j

Jij ≤ λmax ≤ max
i

∑
j

Jij

with equality (on both sides) if and only if all rows are equal. We conclude the following:
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• Assume that (aA) is at least as fit as (aa) in all demes and wi(aA) = 1 > wi(aa) for
at least one deme. Then

min
i

∑
j

Jij ≥ min
i

∑
j

mij = 1 .

Since at least one row sum of J is larger 1, we have λmax > 1 and A is protected.

• Similarly, A is not protected if (aa) is at least as fit as (Aa) in all demes and wi(aA) =
1 < wi(aa) for at least one deme.

• Equivalent equations hold for the protection of the a allele if we replace wj(aa)
by wj(AA) in the entries of J. If both alleles are protected, there is a protected
polymorphism. We see that a sufficient condition is that 1 = wi(aA) ≥ wi(aa) and
wi(aA) ≥ wi(AA) in all demes and wi(aA) < w(aa) and wj(aA) < wj(AA) in at least
one deme each (which could be the same). Note that this condition is only slightly
weaker than requiring overdominance in all demes.

Weak migration

• A more relaxed condition can be derived for weak migration. For this, assume that
wi(aa) < 1 = wi(aA) for at least one deme, but arbitrary fitness values in the other
demes. Then a new A allele in this deme will be able to increase in frequency (invade
the population) if migration is sufficiently weak. Indeed, we have

p′i − pi
pi

∣∣∣
p→p0

=
∑
j

mij
pj
pi

wj
w̄j

∣∣∣
p→p0

− 1 ≥ mii
wi
w̄i

∣∣∣
p→p0

− 1 =
mii − wi(aa)

wi(aa)
.

Equivalent arguments hold for a. We thus have a protected polymorphism of alleles
A and a if demes i and j exist with

wi(aa) < mii = 1−
∑
k 6=i

mik ; wj(AA) < mjj = 1−
∑
k 6=j

mjk .

We also conclude that wi(aa) < 1 and wj(AA) < 1 for some i and j is a sufficient
condition for a protected polymorphism in the limit of weak migration mij → 0, ∀i, j.
I.e., we only require that heterozygotes are superior to aa genotypes in at least one
deme, and superior to AA genotypes in another deme (which can be the same).

3.2 Levene model

A special case of the island model with selection is the Levene model. Here, we assume
that the individuals from all demes (or, equivalently, the gametes they produce) enter a
common migrant pool. They mix and mate (form zygotes) in this pool before they are re-
distributed to the single demes where selection occurs. We thus have population structure
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only with respect to selection (local competition for resources), but not with respect to
reproduction. When assessing the population in zygote state (before selection), this means
that the proportion of individuals with ancestors from any given deme i is equal in all
demes, mij = mj. In the backward migration matrix M, we thus have all rows equal. As a
consequence, we have equal allele frequencies pi = pj := p in all demes at this stage already
after a single generation. The dynamical equation then reads

p′ =
∑
j

mj p
wj
w̄j

. (3.2)

For the protection of the A allele, we obtain the condition

p′ − p
p

∣∣∣
p→0

=
∑
j

mj

wj(aa)
− 1 ,

and equivalently for the protection of the a allele. We can express the condition for a
protected polymorphism as condition for the harmonic mean fitness of migrants(∑

j

mj

wj(aa)

)−1

< 1 ,
(∑

j

mj

wj(AA)

)−1

< 1 . (3.3)

Usually, the mj are taken proportional to the deme sizes in the Levene model. For equal
deme sizes, in particular, mj = 1/d and we obtain a protected polymorphism for

d∑
j

1
wj(aa)

< 1 ,
d∑

j
1

wj(AA)

< 1 . (3.4)

• Since the harmonic mean is smaller or equal than the arithmetic mean (strictly
smaller if there is any inhomogeneity at all), we always have a protected polymor-
phism in the Levene model if the arithmetic mean fitness of both the A and the a
allele is smaller or equal to one. An example is the symmetric model with two demes
and w1(AA) = 1 + s = w2(aa) and w1(aa) = 1− s = w2(AA).

• Demes with small fitness values contribute a high weight to the harmonic means. In
particular, if there are demes with wi(AA) < 1/d and wj(aa) < 1/d, this will already
guarantee a protected polymorphism.

• In a model with multiplicative fitness, we can parametrize wi(aa) = w2
i (a); wi(aA) =

wi(a)wi(A), and wi(AA) = w2
i (A). The protected polymorphism condition then reads

1∑
jmj

wj(A)

wj(a)

< 1 ,
1∑

jmj
wj(a)

wj(A)

< 1 . (3.5)

This is equivalent to the haploid model. The condition is fulfilled, in particular, if
alleles a and A are equivalent, but favored in different demes.
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• The protected polymorphism condition for the Levene model can be understood as a
rare-type advantage of alleles under spatially heterogeneous selection when competi-
tion is local (also called “soft selection”). A rare allele will enjoy a large advantage
in a deme where it is favored and only competes against inferior types. In contrast,
the advantage of an individual with the frequent type in a deme where it is favored
is small, since it mostly competes against its own type.

• For the Levene model with two alleles, one often chooses wi(aa) = 1 − si and
wi(AA) = 1 − ri. The case of interest is the one where each allele is favored in
one deme and disfavored in the other deme, say s1, r2 < 0, r1, s2 > 0. For general
asymmetric migration with m2 = 1−m1, this results in the condition for an protected
polymorphism,

m1

s2

+
(1−m1)

s1

< 1 ,
m1

r2

+
(1−m1)

r1

< 1

Equilibria for the Levene model

From (3.2), the following equilibrium condition for the diploid Levene model reads p = p′

with

p′ =
∑
j

fj(p) =
∑
j

mj
pwj
w̄j

=
∑
j

mj(p
2wj(AA) + p(1− p)wj(aA))

p2wj(AA) + 2p(1− p)wj(aA) + (1− p)2wj(aa)
.

For haploids or diploids with multiplicative fitness (no dominance) within demes, this
simplifies to

p′ =
∑
j

mjpwj(A)

pwj(A) + (1− p)wj(a)
.

For the general diploid case, we derive

∂

∂p
fj(p) =

mj

w̄2
j

((
2pwj(AA)+(1−2p)wj(aA)

)(
p2wj(AA)+2p(1−p)wj(aA)+(1−p)2wj(aa)

)
−
(
p2wj(AA) + p(1− p)wj(aA)

)(
2pwj(AA) + 2(1− 2p)wj(aA)− 2(1− p)wj(aa)

))
leading to

∂

∂p
fj(p) =

mj

w̄2
j

(
p2wj(AA)wj(aA) + 2p(1− p)wj(AA)wj(aa) + (1− p)2wj(aA)wj(aa)

)
> 0 .

Thus, p′ =
∑

j fj(p) is monotonic in p. Results for discrete dynamical systems (see e.g. the
Ecology lecture) show that a monotonic iteration function implies monotonic convergence
of the dynamics to an equilibrium point. Oscillating convergence and complex dynamical
behavior, such as limit cycles or chaos, are excluded. We thus see that the allele frequency
p for the Levene model will always converge monotonically to an equilibrium point (which
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may depend on the starting condition). For an arbitrary number of demes, however, neither
the equilibrium condition for the diploid model nor the one for the haploid case can be
solved explicitly. For the diploid case, in particular, potential internal equilibria are roots
of a polynomial of degree 2d−1. It has indeed been shown that for biallelic Levene models
with d demes any number of internal equilibria ≤ 2d − 1 can be produced for a suitable
choice of fitness parameters. In the following we therefore restrict our analysis to the case
of two demes, where explicit results are possible.

Two demes For the haploid Levene model (or the diploid model with multiplicative
fitness) and m1 = m = 1−m2, we obtain

p = p′ =
mpw1(A)

pw1(A) + (1− p)w1(a)
+

(1−m) pw2(A)

pw2(A) + (1− p)w2(a)
, (3.6)

leading to

p
(
p2w1(A)w2(A) + p(1− p)

(
w1(a)w2(A) + w1(A)w2(a)

)
+ (1− p)2w1(a)w2(a)

)
= p
(
pw1(A)w2(A) + (1− p)

(
mw1(A)w2(a) + (1−m)w2(A)w1(a)

))
which results in p = p0 = 0 or p = p1 = 1 or

p = p̂ =
1−mw1(A)/w1(a)− (1−m)w2(A)/w2(a)

(1− w1(A)/w1(a))(1− w2(A)/w2(a))
. (3.7)

• If wi(A) > wi(a) for both demes i = 1, 2 we have p < 0 in (3.7) and thus no
intermediate equilibrium. Similarly, if wi(A) < wi(a) for both demes, we have p > 1.
Only the boundary equilibria with p = 1 and p = 0 exist in these cases.

• For w1(A) > w1(a) and w2(A) < w2(a) (or labels 1, 2 interchanged), the denominator
in (3.7) is always negative. We get p > 0 for a negative numerator, which holds
exactly under the protection condition (3.5) for A. Similarly, one easily checks that
the condition p < 1 exactly reproduces the protection condition of a (as it must
because of symmetry). We thus find that we have a protected polymorphism if and
only if an internal equilibrium exists.

For the diploid Levene model, the equilibria in addition to the monomorphic equilibria p0 =
0 and p1 = 1 are given by the roots of a third-order polynomial. With the normalization
w1,2(Aa) = 1, we obtain in the general case(
− pw1(AA) + (2p− 1) + (1− p)w1(aa)

)(
p2w2(AA) + 2p(1− p) + (1− p)2w2(aa)

)
=

m
(
p2(w2(AA)−w1(AA))+(1−p)2(w1(aa)−w2(aa))+p(1−p)(w1(aa)w2(AA)−w2(aa)w1(AA))

)
(3.8)
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For the symmetric model with w1 = w1(AA) = w2(aa), w2 = w2(AA) = w1(aa) and
m = 1/2 this reduces to

2
(
− pw1 + (2p− 1) + (1− p)w2

)(
p2w2 + 2p(1− p) + (1− p)2w1

)
=

(w2 − w1)
(
p2 + (1− p)2 + p(1− p)(w2 + w1)

)
(3.9)

with solutions p̂ = 1/2 and

p± =
1

2
±
√

4 + w2
1 + w2

2 − 6w1w2

2(w1 + w2 − 2)
.

A necessary condition for 0 < p± < 1 is that

(w1 + w2 − 2)2 > 4 + w2
1 + w2

2 − 6w1w2 ⇔ 2w1w2 > w1 + w2 .

Comparing with (3.4) we see that this is just the condition that the polymorphism is not
protected and both monomorphic equilibria are stable. In case of a protected polymorphism
we thus have exactly one stable internal equilibrium at p̂ = 1/2 for the symmetric diploid
model. In contrast, when the monomorphic equilibria are stable, cases with one or three
internal equilibria exist. With three internal equilibria, the central equilibrium p̂ = 1/2
can be stable, maintaining the polymorphism even if rare alleles are not protected and the
monomorphic equilibria are also stable.

3.3 The continent-island model

One of the simples scenarios of population structure is one of a single island that is con-
nected to a continent from which it receives migrants. There is no migration in the opposite
direction, either because migration is truly unidirectional (only downstream a river), or be-
cause the continental population is so much larger than the island population that back
migration can be safely ignored. As a consequence, we can first solve the evolutionary
dynamics for the continent separately. Usually, it is simply assumed that the continent
settles for a monomorphic equilibrium. Interest now focuses on the dynamics on the island.
A question that is often raised in this context is when a locally adaptive gene on the island
can be maintained and when it is swamped by maladaptive gene-flow from the continent.

We consider a single diploid locus with two alleles. Allele A is locally adapted on the
island, whereas the continental allele a is disfavored. We allow for dominance at the locus
and define the fitnesses of the three genotypes AA, Aa, and aa as 1, 1 − hs, and 1 − s,
respectively. Let p be the frequency of the island allele A. With discrete generations and
census in the zygote state before selection and migration (i.e., Hardy-Weinberg proportions
at census), the dynamical equation reads

p′ = (1−m) p
wA
w̄

= (1−m) p
1− (1− p)hs

1− 2p(1− p)hs− (1− p)2s
. (3.10)
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The equilibrium condition is always fulfilled for p = 0 (loss of the island type) and for

f(p) :=
(1− (1− p)hs)(1−m)

1− s+ 2s(1− h)p+ s(2h− 1)p2
− 1 = 0 (3.11)

with solutions

p± =
−2s(1− h) + hs(1−m)±

√
s2h2(1 +m)2 + 4ms(1− 2h)

2s(2h− 1)
. (3.12)

We observe the following:

• A rare island allele will be able to invade the population if p′ − p = p · f(p) > 0 for
p→ 0. This is the case if and only if

f(0) =
(1− hs)(1−m)

1− s
− 1 > 0 ⇔ m < m1 :=

s− hs
1− hs

. (3.13)

For m > m1, p = 0 (loss of the island type) is a locally stable equilibrium.

• For m < m1, we have f(0) > 0 and f(1) = −m < 0, we thus have a protected
polymorphism on the island. One can show that the population will indeed settle at
a unique stable intermediate equilibrium.

• For m > m1, both f(0) and f(1) are negative. We then have a stable equilibrium
p > 0 if and only if both p+ and p− are in the interval [0, 1]. We now investigate
when this is the case.

• In the interval p ∈ [0, 1], f(p) is an analytical function. For m > m1, the equilibrium
solutions p±, where f(p) = 0, thus cannot cross the interval boundaries at p = 0 and
p = 1 as we vary m. Since f(p) < 0 in the unit interval for m ≤ 1, any solutions
p± ∈ [0, 1] (for m > m1) can only exist below some finite maximal migration rate
m2 < 1.

• Both p+ and p− are real if and only if the expression under the root in (3.12) is
positive. We find that for s > 2h − 1 this is the case for any m > 0 (in particular,
this holds for any h ≤ 1/2). Since this is in contradiction to a finite maximal m2, we
can exclude this case (i.e. we can conclude that p± cannot be in the unit interval in
this case).

• Assume now 0 < s < 2h−1 and h ≤ 1. We find that f(p) is continuously differentiable
for all p in this case and f(p) < 0 for p→ ±∞. We conclude that f(p) ≥ 0 in [p−, p+]
and f(p) < 0 otherwise. From f ′(p) = 0, we obtain exactly two extreme values of
f(p) (one maximum and one minimum) at

p̂± =
−(2h− 1)(1− hs)±

√
(2h− 1)(2h− 1− sh2)

hs(2h− 1)
.
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Note that p̂− < 0. Finally, we have f ′(1) = −hs(1−m) < 0 and

f ′(0) =
s(3h− 2− s(2h2 − h)

(1− s)2
(1−m) .

– For

0 < s < s0 :=
3h− 2

2h2 − h
(3.14)

we have f ′(0) > 0 and thus a maximum of f(p) in [0, 1] (and no other maximum
can exist). Thus, both p± are in the interval [0, 1] if they exist. Note that the
condition s < s0 requires h > 2/3.

– For s > s0, we have f ′(0) < 0 and the number of extreme values between 0 and
1 must be even. Since p̂− < 0 it must be zero. This excludes p± ∈ [0, 1].

• For 0 < s < 2h− 1 this requires

0 ≤ m < m2 :=

√
(2h− 1− h2s)(2h− 1)− (2h− 1− h2s)

4h− 2− 2h2s
. (3.15)

• Finally, we also find m2 ≥ m1 for s < s1 and m2 = m1 for s = 0 and s = s0.
Summarizing, we have a stable internal equilibrium for

m < m2 for 0 ≤ s ≤ s0 ,

m < m1 for s > s0 .
(3.16)

For h ≤ 2/3 (where s0 ≤ 0) always the bound m1 applies and maintenance of the
island allele implies that it can invade. This includes the case of h < 0 (overdomi-
nance). For h ≥ 1 (i.e., underdominance) we have m1 ≤ 0 and the island allele can
never invade. However, it can still be maintained if m < m2. (For h ≤ 1, all results
apply as long as hs < 1, i.e., hybrids have positive fitness).

Continuous time model

The dynamics in continuous time is usually qualitatively equivalent to the discrete time
model, but derivations are often easier. In continuous time, all evolutionary forces are
described as rates and the corresponding events (selection, mutation, migrations, etc.)
occur in parallel. For selection and migration in the continent-island model, we obtain

ṗ = p(wA − w̄)−mp = p
(
− (1− p)hs+ 2p(1− p)hs+ (1− p)2s−m

)
(3.17)

Similarly to the discrete case, we define f(p) = ṗ/p,

f(p) = p2(s− 2hs) + p(3hs− 2s) + s− hs−m, (3.18)

f ′(p) = p(2s− 4hs) + 3hs− 2s . (3.19)

We observe:
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• The island allele can invade if f(0) > 0, which implies

m < m1 := s− hs . (3.20)

• For m > m1, the island allele can be maintained at a stable equilibrium if both
potential equilibrium points p± are in the unit interval. We have

p± =
2− 3h±

√
(4m(1− 2h) + h2s)/s

2− 4h

This is always real for h ≤ 0.5. We can exclude this case for the same reasons as in
the discrete case. For h > 0.5, we need

m < m2 :=
h2s

4(2h− 1)
(3.21)

For h > 0.5, f(p) has a single maximum at p̂ = (3hs− 2s)/(4hs− 2s). For h > 2/3,
this maximum is in the unit interval. We have m2 ≥ m1 and m1 = m2 for h = 2/3.

m < m2 for h ≥ 2

3
,

m < m1 for h <
2

3
.

(3.22)

Note also that m1,2 are the leading order approximations for small s of the counterparts in
the discrete model. The most significant difference is that the boundary between the two
regimes depends only on h in continuous time.

3.4 Two demes with two alleles

We only treat the haploid (diploid multiplicative) model. In discrete time, we get

p′1 = (1−m1)
p1w1(A)

p1w1(A) + (1− p1)w1(a)
+m1

p2w2(A)

p2w2(A) + (1− p2)w2(a)
(3.23)

p′2 = (1−m2)
p2w2(A)

p2w2(A) + (1− p2)w2(a)
+m2

p1w1(A)

p1w1(A) + (1− p1)w1(a)
, (3.24)

which leads to high-order polynomials for the equilibria. The simpler dynamics in contin-
uous time reads

ṗ1 = p1(w1(A)− w̄1)−m1(p1 − p2) = p1(1− p1)s1 −m1(p1 − p2) (3.25)

ṗ2 = p2(w2(A)− w̄2)−m2(p2 − p1) = p2(1− p2)s2 −m2(p2 − p1) , (3.26)

where si = wi(A) − wi(a) is the selection coefficient of the A allele in deme i. Setting
ṗ1 = ṗ2 = 0, the equation system leads to the condition

p1(1− p1)
(

(1− (1− p1)s1/m1)(1 + p1s1/m1)s2/m2 + s1/m1

)
= 0 .
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This results in the monomorphic equilibria p0 = (0, 0) and p1 = (1, 1) as the only boundary
equilibria. In addition, there may be an internal equilibrium p̂ = (p̂1, p̂2) with

p̂1± =
1

2
− m1

s1

±
√

1

4
− m1

s1

m2

s2

; p̂2∓ =
1

2
− m2

s2

∓
√

1

4
− m1

s1

m2

s2

Clearly, an internal equilibrium is only possible if the direction of selection in both demes
is opposite, s1s2 < 0 since otherwise ṗ1 and ṗ2 cannot both be zero. From 0 < p̂1 + p̂2 < 2,
we further find that ∣∣∣∣m1

s1

+
m2

s2

∣∣∣∣ < 1 (3.27)

is necessary condition. Assuming (without restriction) s1 > 0 and s2 < 0, we have p1− < 0
and p2+ > 1, but p̂ = (p̂1+, p̂2−) is in the interior of the frequency space since from (3.27)

m1

s1

− 1 <

∣∣∣∣m2

s2

∣∣∣∣ < m1

s1

+ 1 ;

∣∣∣∣m2

s2

∣∣∣∣− 1 <
m1

s1

<

∣∣∣∣m2

s2

∣∣∣∣+ 1

and thus

0 ≤ 1

2
− m1

s1

+

√
1

4
+
m1

s1

(
m1

s1

− 1

)
< p̂1+ <

1

2
− m1

s1

+

√
1

4
+
m1

s1

(
m1

s1

+ 1

)
= 1

and

1 ≥ 1

2
− m2

s2

−

√
1

4
+

∣∣∣∣m2

s2

∣∣∣∣ (∣∣∣∣m2

s2

∣∣∣∣− 1

)
> p̂2− >

1

2
− m2

s2

−

√
1

4
+

∣∣∣∣m2

s2

∣∣∣∣ (∣∣∣∣m2

s2

∣∣∣∣+ 1

)
= 0 .

Stability The Jacobian of the dynamical system reads

J =

(
(1− 2p1)s1 −m1 m1

m2 (1− 2p2)s2 −m2

)
and the maximum eigenvalue follows as

λmax =
1

2

(
(1− 2p1)s1 + (1− 2p2)s2 −m1 −m2

+
√

((1− 2p1)s1 − (1− 2p2)s2 −m1 +m2)2 + 4m1m2

)
. (3.28)

An equilibrium p is stable if λmax(p) < 0. For p = p0 this requires that s1 + s2 < m1 +m2

and s1m2 + s2m1 < s1s2. As expected, this is always the case for s1, s2 < 0 and never
for s1, s2 > 0 (since (m1 + m2)/(s1 + s2) < m1/s1 + m2/s2 in the latter case). From
symmetry, we conclude that p1 is stable for s1, s2 > 0 and unstable for s1, s2 < 0. In both
cases, m2p1 + m1p2 is a Lyapunov function (i.e., strictly monotonic under the dynamics)
in the interior of the state space. We therefore have global convergence to the respective
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monomorphic equilibrium. For opposite selection in both demes (s1 > 0 and s2 < 0, say),
p0 is stable iff m1/s1 + m2/s2 > 1 (which implies m1 > s1 and thus s1 + s2 < m1 + m2).
Similarly, p1 is stable iff m1/s1+m2/s2 < −1. From condition (3.27) we conclude that both
monomorphic equilibria are unstable whenever an internal equilibrium exists. Otherwise,
exactly one monomorphic equilibrium is stable. Global stability of the internal equilibrium
follows from an analysis of the isolclines of ṗ1 = 0 and ṗ2 = 0. For s1 > 0 and s2 < 0, both
are monotonically increasing functions p2(p1) in the interior of the state space. It is then
easy to see that their intersection (if it exists) must be a global attractor.

4 Literature

• Durrett R (2008) Probability Models for DNA Sequence Evolution (2nd ed.) Springer.
A lot of material on advanced stochastic modelling, including selective sweeps.

• Ewens WJ (2004) Mathematical Population Genetics (2nd ed.) Springer.
Standard reference for the stochastic theory, in particular diffusions.

• Nagylaki T (1992) Introduction to Theoretical Population Genetics. Springer.
Comprehensive account in particular of the deterministic theory. Chapter 6 on
migration-selection models.

• Wakeley J (2008) Coalescent Theory: An Introduction. Roberts & Company Pub-
lishers, Greenwood Village, Colorado.
Standard introductory textbook on coalescent theory.


