The Neutral Model Evolution without selection

Joachim Hermisson

Mathematics and Biosciences Group Mathematics & MFPL, University of Vienna

Evolutionary processes

Evolutionary processes

What is random genetic drift?

What is random genetic drift?

How do we define drift?

What is random genetic drift?

How do we define drift?

Change in allele counts due to variation in offspring number that is

- independent of external factors independent of genotypes (heritable factors)

Effects of drift in a finite population:

- allele frequencies in finite populations are not fixed, but undergo random changes from one generation to the next
- allele frequencies in sub-population diverge after population split
- alleles may get lost from a population or reach fixation

How to quantify this? – need a model

The Wright-Fisher model: Drift as binomial sampling

- Discrete time, non-overlapping generations
- Single haploid locus with two alleles
- Constant haploid population size 2N
- Alleles in the next generation are sampled from an *infinite gamete pool* of the current generation
- "Offspring randomly choose a parent" and inherit his/her genotype
- > Sampling with replacement \implies ?

The Wright-Fisher model: Drift as binomial sampling

population (size 2N)

Binomial distribution

single parent: probability for k offspring (# trials n = 2N; success prob. p = 1/2N)

$$\Pr[k] = \binom{2N}{k} \left(\frac{1}{2N}\right)^k \left(1 - \frac{1}{2N}\right)^{2N-k}$$

mean: $E[k] = n \cdot p = 1$

variance

nce:
$$\sigma_k^2 = n \cdot p(1-p)$$

= $1 - (1/2N) \approx 1$

The Wright-Fisher model: Drift as binomial sampling

population (size 2N)

Binomial distribution

population: allele frequency $p_t = \frac{i}{2N}$ probability for $p_{t+1} = \frac{j}{2N}$ in next generation:

$$P_{ij} = {\binom{2N}{j}} \left(\frac{i}{2N}\right)^j \left(1 - \frac{1}{2N}\right)^{2N-j}$$

mean: $E[p_{t+1}] = p_t$

variance:
$$Var[p_{t+1}] = \frac{p_t(1-p_t)}{2N}$$

drift stronger in small populations

The Wright-Fisher model: Fixation of neutral alleles

The Wright-Fisher model: Fixation of neutral alleles

time in generations

The Wright-Fisher model: Fixation of neutral alleles

population (size 2N)

Can drift (plus mutation) explain observed patterns of diversity ?

Motoo Kimura 1960's: Neutral theory of molecular evolution

The observed natural diversity at the molecular level is largely the result of neutral evolution: patterns of genetic variation and diversity are explained by drift and mutation

What neutral theory does not say:

"Selection is not important for evolution"

- Purifying selection responsible for conserved DNA (eg in genes)
- Adaptive evolution due to positive selection
- But: adaptive diversity tiny relative to neutral diversity

Which patterns do we expect? - need a model

Description of neutral genetic variationsingle locus, multiple alleles

Drift:

generation

2.

- random sampling of parents
- *k* types: multinomial offspring distribution

$$\Pr[p'_1, \dots, p'_k] = \frac{N!}{\prod_i (p'_i N)!} \prod_i p_i^{p'_i N}$$

population (size 2N)

Description of neutral genetic variationsingle locus, multiple alleles

Mutation:

probability u for each offspring

Three different mutation schemes:

- finite alleles model: like deterministic, include extra step in *infinite gamete pool*
- infinite alleles model: every mutation leads to a new allele ("new color")
- infinite sites model: every mutation occurs at a different site and thus *remains visible*

1. 2. generation

1. Neutral variation: expected heterozygosity H / nucleotide diversity E[π]

- What is the probability that two randomly sampled alleles from a Wright-Fisher population have a different type?
 - change in heterozygosity from generation $t \rightarrow t+1$

$$H_{t+1} = 2u + (1 - 2u) \left(1 - \frac{1}{2N} \right) H_t$$

• in equilibrium $(H = H_{t+1} = H_t)$: $H \approx \frac{\theta}{\theta + 1}$, $\theta = 4Nu$

• nucleotide level ($\theta << 1$): $E[\pi] = H_{\text{nucleotide}} = \frac{\theta}{\theta + 1} \approx \theta$

1. Neutral variation: expected heterozygosity H / nucleotide diversity $E[\pi]$

 $H \approx \theta = 4Nu$ should increase with mutation rate *u* and with pop. size *N*

Although an increase is observed, there are strong deviations from the prediction of neutral theory:

E Coli	$H \approx 0.16$	$u\approx 10^{-10}$	$\rightarrow N \approx 10^8$?	$> 10^{10}$ in each human !
Drosophila	$H\approx 0.01$	$u\approx 3\cdot 10^{-9}$	$\rightarrow N \approx 10^6$?	$> 10^{15}$ (?)
Homo	$H \approx 0.001$	$u \approx 3 \cdot 10^{-8}$	$\rightarrow N \approx 10^4$?	$\sim 10^{9}$

Reasons?

- population bottlenecks
- selection

- 1. Neutral divergence: substitution rates
- > At which rate are neutral alleles substituted in a population?
 - new mutational input per generation: 2Nu
 - fixation probability for each new mutant:

$$p_{fix} = \frac{1}{2N}$$

> neutral substitution rate:
$$2Nu \cdot \frac{1}{2N} = u$$

- independent of population size !
- basis for "molecular clock" estimates

Can drift (plus mutation) explain observed patterns of diversity ?

- Sparked the fierce adaptionist / neutralist debate
- Today: selection seems to be very important even at the molecular level:
 - New mutations: many non-coding parts of the genome under selection (regulatory elements, etc)
 - Substitutions: large fractions seem to be driven by positive selection (> 50% in *Drosophila*)
- But: neutral theory generally accepted null model of molecular evolution
- Foundation of statistical genetics as research field

