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What is population genetics? – Basic concepts and definitions

Evolution describes the change in heritable characteristics of biological populations over
time. Depending on the type of these characteristics, and depending on the time-scale of
interest, we can distinguish different branches of evolutionary research.

• Phylogenetics is the study of constructing of the tree of life, following Darwin’s insight
that all life on Earth (and the fossil record) shares common ancestors. Changes
in traits and characteristics among species, or the emergence of new traits, occur
over macroevolutionary timescales, millions or billions of years. Differences between
individuals within each species can usually be ignored relative to the differences
between species. Each species is therefore usually represented by only a single data
point, such as a consensus DNA sequence (“the” human genome).

• Population genetics and quantitative genetics are interested in the microevolution-
ary process within a population. Microevolution deals with heritable characteristics
that differ among individuals in a population, and describes how the distribution
of these characteristics changes across generations. Going back to Darwin (again)
and to Wallace, the elementary forces that drive these changes are well-understood:
mutation, selection, recombination, genetic drift, and gene flow/migration. Unlike
phylogenetics, which is essentially a historical science, microevolution has a mecha-
nistic basis that can be used to construct theoretical models and to make predictions
about the future.
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Genotype and phenotype

Each individual in a population can be characterized by a large number of morphological,
physiological, and behavioral traits, which collectively define its phenotype. Individual
phenotypes may be more or less adapted to the environmental conditions and influence
the viability or reproductive success of their carriers. As a consequence, selection operates
on phenotypes. Phenotypes themselves are not inherited, but phenotypic characteristics,
such as body size, are influenced by heritable and non-heritable factors.

The part of an individual that is directly heritable is its genotype. The genotype of
each individual is largely encoded in its genome and is represented by its DNA (Deoxyri-
boNucleic Acid) sequence. DNA is a polymer made up of four types of nucleotides, which
differ in the base that they contain: adenine (A), guanine (G), thymine (T), and cyto-
sine (C). The nucleotides are organized into two polynucleotide chains that form a double
helix with A-T and G-C base pairs. In eukaryotic cells (animals, plants, fungi), the cell
nucleus contains several such DNA double strands, called chromosomes. In prokaryotic
cells (bacteria and archaea), DNA typically forms a single ring (bacterial chromosome).
Through development, the genotype determines (the heritable part of) the phenotype, but
the connection is extremely complex for most phenotypic traits. The genotype naturally
decomposes into genes, functional units of DNA that code for a single protein. Quantita-
tive traits of interest (such as milk yield in cows) are usually influenced by a large number
of genes.

Due to the complexity of the genotype-phenotype map, all models of (micro)evolution
must rely on simplifying assumptions. Quantitative genetic models rely on phenotypic
data, but often do not resolve individual genes. Rather, they infer heritable and non-
heritable parts of phenotypic traits directly from trait measurements across generations.
Population genetic models, on the other hand, directly track the frequencies of genotypes
and variants of genes in a population. They often do not refer to phenotypes at all, but
assume that selection acts directly on the genes, regardless of where the selection pressure
comes from and how it is transmitted across the genotype-phenotype map.

Genes, loci, and alleles

Population genetics is concerned with the evolutionary dynamics of genotypes. It follows
the frequencies of genetic variants or alleles that differ between individuals. The complete
genotype of each individual is given by its DNA sequence (≈ 3 billion base pairs in the
human genome, ≈ 130 million in Drosophila). Usually however, one is only interested in
certain aspects of the genotype, such as the genomic positions, or genetic loci, that affect
a phenotypic trait of interest. At the molecular level, a locus is the position of a single
base in the DNA. There are four alleles, corresponding to the four different bases, A, T,
G, and C. However, often the term locus is used at a coarser level to refer to the position
of a gene or some other significant stretch of sequence. It is always assumed that a locus is
a “unit of recombination” that is not broken up during reproduction. There can be many
different alleles at a single locus (4n different alleles for a gene that is represented by a
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DNA sequence of fixed length n), but usually one considers classes of equivalent alleles.
Many population genetic models distinguish only two classes: an ancestral wildtype and a
mutant allele.

Genetic loci can have different levels of ploidy. Most simple life forms (bacteria, mosses,
algae, fungi) have a single copy of each chromosome, they are haploid. For haploids,
a single-locus genotype is determined by a single allele. Almost all higher plants and
animals are diploid, i.e., most of their chromosomes (the so-called autosomes = non-sex
chromosomes) are present twice in each adult cell. Some organisms (mostly plants) have
an even higher ploidy level (e.g., tetraploid with a 4-fold set). Consequently, single-locus
genotypes in diploids are given by a pair of alleles (4 alleles in tetraploids, etc).

Mathematical methods

The art of mathematical modeling is to choose the appropriate mathematical methods for
the scientific question at hand. Since population genetics is concerned with changes in
allele frequencies as a function of time, natural mathematical methods come from fields
that describe such processes. Often, the most important decision for a given problem is to
decide whether a deterministic or a stochastic framework is appropriate.

• Deterministic models in population genetics use methods from the theory of dynam-
ical systems and of differential equations. On the biological side, this is appropriate
if stochastic effects due to a finite population size (genetic drift) can be ignored.
This is usually the case if selection is the dominant population genetic force and if
the total number of individuals carrying a particular allele is not very small. The
dynamics can be modeled in discrete time (using discrete dynamical systems) when
a generation is a natural time unit in the biological system, as in annual plants. In
other cases, a continuous-time dynamics (based on differential equations) is more
appropriate and/or more convenient.

• If genetic drift has a strong effect on the evolutionary process, stochastic models are
needed. Basically all these models build on Markov processes (assuming that evolu-
tion is only affected by the current state of the population, not its entire history)-
Typical examples are birth-death processes or branching processes. As in the de-
terministic case, they can proceed in discrete or in continuous time. In particular,
coalescent theory is a stochastic process which proceeds backwards in time, from the
present to the past. This turns out to be particularly useful if we want to explain
observed patterns of diversity in data by past evolutionary processes. If population
sizes are large and if selection is not too strong, allele frequencies can be treated as
a continuous random variable on the unit interval. This leads to diffusion processes
as a model of evolutionary change. In fact, parts of the theory of diffusion were
developed in the early 20th century with applications in population genetics in mind.
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1 Deterministic evolutionary dynamics

1.1 Selection at a single haploid locus

Consider a haploid population of size N . We characterize the genotype by the allelic type
at a single locus. There are k alleles, denoted {A1, . . . , Ak}. Generations are discrete and
we assume that the population is sufficiently large that stochastic effects due to genetic
drift can be ignored. Assume that there are initially ni individuals with allele Ai. The
frequency of Ai in the population is thus pi = ni/N . Reproduction is clonal, offspring
inherit the genotype of their (single) parent, without any modification (no mutation). We
are interested in the change of allele frequencies due to selection across a single generation.

Fitness

The fundamental property of individuals that leads to selection and drives adaptive evolu-
tion is their fitness. In population genetics, we assign fitness values directly to genotypes
or alleles, as follows:

• The viability vi ≥ 0 measures the probability that a newborn Ai individual survives
to reproductive age (vi = 0 means that the individual is inviable).

• The fecundity fi ≥ 0 measures the expected number of offspring of an adult Ai

individual (fi = 0 means that the individual is sterile).

• Finally, the (absolute) fitness of allele Ai is defined as

wi = vi · fi .

wi ≥ 0 measures the expected number of offspring of a newborn Ai individual.
Ignoring stochastic effects, we thus have n′

i = wini for the number n′
i of Ai individuals

in the next generation.

For the change in a single generation, we obtain

N ′ =
∑
i

n′
i =

∑
i

wini =
(∑

i

wipi

)
N =: w̄N (1.1)

where w̄ =
∑

i piwi is the mean fitness in the population. For the change in allele frequen-
cies, the canonical selection equation for a single haploid locus follows as

p′i =
n′
i

N ′ =
wini

w̄N
=

wi

w̄
pi or: ∆pi = p′i − pi =

wi − w̄

w̄
pi . (1.2)

We see that any fitness differences among alleles that are represented in the population
(wi ̸= wj for pi, pj > 0) entails evolutionary change due to selection.

For allele frequency changes across multiple generations, we need to account for the fact
that absolute fitness values, as defined above, are usually not constant across generations.
Indeed, wi = wi(N) is usually not only a function of the allelic type Ai, but (at least) also
of the population size N (or density).
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• Imagine first that fitness does not depend on the population size (or density). We
then have n′

i = wini and either obtain unlimited growth or decline of ni over multiple
generations, or (with wi = 1 for all alleles) no selection. This is clearly unrealistic.

• Assume next that fitness does depend on density, but not on the allelic state. We
then have w̄(N) = wi(N) =: w(N) and thus

p′i = pi ; N ′ = w(N)N .

This means we have only changes in the population size (population dynamics), but
no changes in the allele frequencies (population genetics) and thus no evolution.
Pure population dynamics is a topic of theoretical ecology. With models like logistic
growth (w(N) = r− cN), population sizes can be regulated and converge to a finite,
no-zero value.

• To obtain a reasonable evolutionary model, we need to combine a model of population
regulation with a model of evolutionary change. A canonical approach that is implicit
to most models in population genetics is to assume that population size regulation
is independent of selection. Absolute fitness values then decompose into two parts

wi(N) := w(N) · wi ,

(where we distinguish 3 “w functions”, wi(N), w(N), and wi, in slight abuse of
notation). This leads to

p′i =
wi(N)

w̄(N)
pi =

w(N)wi

w(N)
∑

i wipi
pi =

wi∑
i wipi

pi =
wi

w̄
pi (1.3)

and the density dependence drops out. Following this idea, population genetic models
usually do not work with absolute fitness values, but only the relative fitness values.
If population size regulation is independent of selection, relative fitnesses are density
independent. We can then ignore changes in the population size in population genetic
models and only follow the dynamics of allele frequencies. Note that, from here on,
we will use the symbols wi and w̄ for (mean) relative fitness only. Likewise, if we
simply refer to fitness, it is relative fitness what is meant.

• Since any factor that is common to all fitness values wi drops out of the selection
equation, relative fitness values wi are only defined up to a constant factor. We
can use this freedom to normalize the fitness of some reference allele A1 (often: the
ancestral wildtype allele) to w1 = 1.

• Following these leads, the easiest model of selection results if we assume constant
relative fitness values for all alleles. The change in pi across t generations follows as

pi(t) =
ni(t)

N
=

wt
i ni(0)∑

j w
t
j nj(0)

=
wt

i pi(0)∑
j w

t
j pj(0)

. (1.4)
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If w1 > wj, j ≥ 2, we obtain

pi(t) =
pi(0)∑

j (wj/wi)
t · pj(0)

t → ∞−−−−−→
pi(0)

p1(0) limt→∞ (w1/wi)
t = δ1,i .

We conclude that with constant (time-homogeneous and frequency-independent) se-
lection in haploids only the fittest allele survives and fixes in the population. There
is no genetic variation maintained.

1.2 Selection at a single diploid locus

Consider a diploid locus with two alleles (wildtype and mutant), A and a. In principle,
there can be 2 × 2 = 4 genotypes at the locus, but if there is no position effect (i.e. it
does not matter on which DNA strand an allele is located), there are only three: the two
homozygous genotypes AA and aa and the heterozygous genotype Aa (= aA). Let x, y,
and z be the frequencies of genotypes AA, Aa, and aa, respectively. We can express the
frequencies p = x + y/2 of the A allele and q = z + y/2 of the a allele in terms of the
genotype frequencies, but note that this is generally not possible vice-versa.

Random mating and Hardy-Weinberg proportions

To describe evolutionary dynamics in diploids, even without selection, we first need a model
for the change in genotype frequencies under reproduction. Most diploids reproduce sexu-
ally. Under Mendelian inheritance, each newborn inherits a single allele from both parents
at each autosomal locus. In general, the change of genotype frequencies across genera-
tions depends on the mating pattern. For example, males and females often prefer mating
partners with similar phenotypic characteristics such as body size (assortative mating).
However, the simplest mating scheme that is also used by default in population genetics
assumes that matings are random. We also assume that sexes are equivalent and there are
no differences in genotype frequencies among males and females in the population (this is
necessarily true for monoecius species, where all individuals act in male and female roles).
We can then summarize the offspring frequencies for each mating type in a table:

♀ ♂ mating
prob. x′ y′ z′

AA AA x2 1 0 0
Aa xy 1/2 1/2 0
aa xz 0 1 0

Aa AA xy 1/2 1/2 0
Aa y2 1/4 1/2 1/4
aa yz 0 1/2 1/2

aa AA xz 0 1 0
Aa yz 0 1/2 1/2
aa z2 0 0 1

x′ = 1 · x2 + 2
1

2
xy +

1

4
y2 =

(
x+

y

2

)2

= p2

y′ = 2
1

2
xy + 2

1

2
yz + 2xz +

1

2
y2

= 2
(
x+

y

2

)(
z +

y

2

)
= 2pq

z′ = 1 · z2 + 2
1

2
yz +

1

4
y2 =

(
z +

y

2

)2

= q2
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The third column of the table gives the probability of the mating pair under random
mating and columns 4 to 6 the genotype frequencies in the offspring generation under
Mendelian inheritance, conditioned on the mating pair. The total (unconditioned) geno-
type frequencies in the offspring generation derived by summing over all mating pairs. We
observe:

• The genotype frequencies after a single generation of random mating are determined
by the allele frequencies, (x′, y′, z′) = (p2, 2pq, q2): Hardy-Weinberg proportions.

• The allele frequencies do not change under random mating

p′ = x′ +
1

2
y′ = p ; q′ = z′ +

1

2
y′ = q .

There is thus no loss of genetic variation under Mendelian inheritance.

• The so-called Hardy-Weinberg law states that, after a single generation of random
mating, both the allele frequencies and the genotype frequencies remain invariant:
They are in Hardy-Weinberg equilibrium.

• It is easy to extend the Hardy-Weinberg law to an arbitrary number of alleles
{A1, . . . , Ak}. Let Pij = Pji denote the frequency of the genotype AiAj. The al-
lele frequency of Ai is pi = Pii +

1
2

∑
j ̸=i Pij . A straight-forward extension of the

2-allele derivation shows that p′i = pi, P
′
ii = p2i and, for j ̸= i, P ′

ij = 2pipj.

The important consequence of the Hardy-Weinberg (HW) law for population genetic mod-
els is that it is sufficient to follow k allele frequencies, rather than the k(k+1)/2 frequencies
of diploid genotypes. However, the law is only valid under a number of assumptions.

• Random mating: with other mating schemes (e.g. assortative mating or selfing),
we obtain different equilibrium frequencies and generally only gradual (asymptotic)
convergence to this equilibrium, rather than convergence in a single generation.

• Discrete Generations: Convergence to HW proportions is only asymptotic if genera-
tions are overlapping (individuals do not all reproduce and die at the same time).

• Equivalent sexes: If the initial allele frequencies in males and females differ, HW
proportions are only reached in two generations of random mating.

• Autosomal loci: For X-linked loci (that are diploid in females, but haploid in males),
HW proportions are only reached asymptotically.

• No selection, mutation, or drift: all evolutionary forces readily lead to deviations
from HW proportions. However, as we will see below, we can often still make use of
the HW law at certain stages of a diploid life cycle.
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Viability selection at a single diploid locus

Consider a diploid population with discrete generations and equivalent sexes and a single
locus with two alleles, A and a with frequencies p and q, respectively. We also assume
that selection acts on the viability, the probability that newborn diploid individuals reach
reproductive age. We can then dissect the life-cycle of the population into two phases:
a selection phase, during which juveniles grow up and a reproductive phase where adults
mate and produce offspring. The key assumption is that selection and reproduction can
be separated and occur at different stages.

• Consider the reproductive phase first. If reproduction works via random mating
as described above, we can use the results of the HW law: Allele frequencies are
conserved during the reproductive step and genotype frequencies will be in HW
equilibrium directly after reproduction (for zygotes (= newly fertilized eukaryotic
cell) not yet affected by selection).

• We still need a model for the change of allele and genotype frequencies during the
reproductive phase. We assign fitness values wAA, wAa, and waa to the three geno-
types AA, Aa, and aa, respectively. The genotypes frequencies are PAA, PAa, and
Paa, and the allele frequencies are p = PAA + PAa/2 and q = Paa + PAa/2. We can
the define marginal fitness values for the alleles A and a,

wA =
wAA2PAA + wAaPAa

2PAA + PAa

, wa =
waa2Paa + wAaPAa

2Paa + PAa

.

The mean fitness in the population follows as

w̄ = wAAPAA + wAaPAa + waaPaa = wAp+ waq .

With these definitions, the changes in genotype and allele frequencies over a life cycle
can easily be expressed. They are summarized in the following table.

AA Aa aa A a
frequency

after random mating PAA = p2 PAa = 2pq Paa = q2 p q

frequency
after selection p2wAA

w̄
2pqwAa

w̄
q2waa

w̄
pwA

w̄
= p′ qwa

w̄
= q′

next gener. frequency
after random mating P ′

AA = p′2 P ′
Aa = 2p′q′ P ′

aa = q′2 p′ q′

Note that the diploid selection equation for the allele frequencies takes the same
functional form as in the haploid case if we replace the allelic fitness value by the
corresponding marginal fitness. In general, marginal fitnesses and the mean fitness
depend on the genotype frequencies and the equations on the level of allele frequencies
do not form a closed dynamical system. In the special case of random mating and
viability selection, however, we can express genotype frequencies as HW proportions
and the dynamical system for the allele frequencies closes. In particular, the marginal
fitness values simplify to

wA = wAAp+ wAaq , wa = waaq + wAap .
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Selection scenarios

We have seen that viability selection on a single diploid locus with random mating leads
to a selection equation that is formally equivalent to the haploid case. The difference is
that the marginal fitness values for the alleles depend on the allele frequencies, even if
the genotypic fitness values are constant. This leads to differences in the evolutionary
dynamics. To characterize these differences, we use the following classical parametrization
of the genotypic fitness values.

waa = 1 normalization of the (relative) wildtype fitness (1.5a)

wAA = 1 + s s: selection coefficient for the homozygote mutant (1.5b)

wAa = 1 + hs h: dominance coefficient for heterozygote fitness (1.5c)

Depending on the value of the dominance coefficient, we distinguish the following biological
scenarios for the mutant allele A

h



> 1 overdominant
= 1 (fully) dominant
∈ (1

2
, 1) partially dominant

= 1
2

codominant (or no dominance)

∈ (0, 1
2
) partially recessive

= 0 (fully) recessive
< 0 underdominant

For all cases, the marginal allele fitnesses and mean fitness in HW equilibrium follow as

wa = 1 + p · hs (1.6a)

wA = 1 + q · hs+ p · s (1.6b)

w̄ = 1 + 2pq · hs+ p2 · s (1.6c)

and the allele frequency change per generation of the mutant allele is

∆p = p′ − p =
wA − w̄

w̄
p = pq

s(h+ (1− 2h)p)

w̄
.

In contrast to the haploid case, there is usually no explicit solution for the allele frequency
p(t) as a function of time. However, it is straightforward to derive the equilibrium frequen-
cies of the dynamical system. We have ∆p = 0 for

p = 0 , p = 1 [⇔ q = 0] (monomorphic equilibria)

h+ (1− 2h)p = 0 ⇒ p = p̂ =
h

2h− 1
(polymorphic equilibrium)

The equilibrium at p̂ is in the interior of the frequency space, 0 < p̂ < 1, if and only if
either h > 1 (A is overdominant) or h < 0 (A is underdominant). We can distinguish three
parameter ranges, based on the dominance coefficient, that lead to qualitatively different
dynamical behavior.
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1. In the whole parameter range 0 ≤ h ≤ 1, ranging from complete recessiveness to
complete dominance of the mutant allele A, we have

h+ (1− 2h)p > 0 for 0 < p < 1

and thus ∆p > 0 for a beneficial mutant (s > 0), resp. ∆p < 0 for a deleterious
mutant (s < 0). The dynamical system therefore converges monotonically either to
the equilibrium at p = 1 or to p = 0 for the beneficial or deleterious case, respectively.

2. If an equilibrium p̂ at an intermediate frequency exists, we can write

∆p =
pqs(2h− 1)

w̄
(p̂− p) .

With s > −1, we also have

w̄ − pqs(2h− 1) = 1 + 2pqhs+ p2s− pqs(2h− 1) = 1 + ps > 0 .

We therefore obtain monotone convergence of p(t) toward the polymorphic equilib-
rium p̂ for the overdominant case (h > 1) if s > 0 and for the underdominant case
(h < 0) if s < 0. In both cases, the heterozygote is the fittest genotype (heterozygote
advantage). Note that an underdominant allele A corresponds to an overdominant
allele a. The term overdominance is often used as synonymous to heterozygote ad-
vantage, implicitly using the allele with the higher fitness as reference.

3. Analogously, we find monotonic divergence from p̂ toward either p = 0 or p = 1
for the underdominant beneficial case (h < 0 and s > 0) and for the overdominant
deleterious case (h > 1 and s < 0).

We see that heterozygote advantage (“overdominance”) is necessary and sufficient for the
maintenance of genetic variation under selection at a single diploid locus.

Multiple alleles

It is easy to extend the 2-alleles case for a single diploid locus to the general case of k alleles,
{A1, . . . , Ak} with frequencies {p1, . . . , pk}. Let wij = wji be the fitness value of genotype
AiAj, with frequency Pij in the population. After random mating, the population is in
HW equilibrium, thus Pii = p21 and Pij = 2pipj for i ̸= j. The marginal allelic fitnesses
and the mean fitness are

wi =
∑
j

wijpj , w̄ =
∑
i

wipi =
∑
i,j

wijpipj

and the change in allele frequencies is

p′i =
wi

w̄
pi resp. ∆pi = p′i − pi =

wi − w̄

w̄
pi . (1.7)
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Continuous time model for selection

Mathematically, our model so far for the evolutionary dynamics has been a discrete dy-
namical system. A model in discrete time is realistic for some biological species (e.g. annual
plants), it has some technical advantages (in particular, it allows for a separation of repro-
duction and selection) and it is easy to simulate on a computer. However, it is often more
convenient (and/or more realistic biologically) to model evolution in continuous time. To
this end, consider again a single haploid locus with k alleles, {A1, . . . , Ak}. If births and
deaths occur at a constant rate, the number ni of Ai types changes like

ṅi(t) =
dni(t)

dt
= (bi − di)ni(t) = mini(t), (1.8)

where bi and di are the birth- and death-rates and mi = bi−di the total growth rate, which
is also called the Malthusian fitness of allele type Ai. The dynamics of the total population
follows as

Ṅ(t) =
∑
i

ṅi(t) =
∑
i

mini(t) = N(t)
∑
i

mipi(t) = m̄(t)N(t), (1.9)

where pi(t) = ni(t)/N(t) is the frequency of allele Ai and m̄(t) =
∑

i mipi(t) the mean
Malthusian fitness. The allele frequencies change according to

ṗi(t) =
d

dt

(
ni(t)

N(t)

)
=

N(t)ṅi(t)− ni(t)Ṅ(t)

N2(t)
=

(
mi − m̄(t)

)
pi(t). (1.10)

Since Eq. (1.8) implies exponential growth (or decline) of the ni, the Malthusian fitness
values mi (like the “Wrightian” fitness values wi in discrete time) need to depend on the
population density in a realistic model. However, as in discrete time, this dependence drops
out for the allele frequency dynamics Eq. (1.10) if we assume the same density dependence
for all alleles (and set mi(N) = m(N) +mi).

• If we assume Hardy-Weinberg proportions, the haploid evolution equation can again
be generalized to diploids with fitness values mij for genotype AiAj, marginal fitness
mi =

∑
j mijpj and mean fitness m̄ =

∑
ij mijpipj.

• Whereas the evolution equations in discrete time take the form of difference equations,
they are ordinary differential equations (ODEs) in continuous time. Since ODEs are
convenient from a mathematical perspective, they are often preferred in models. For
diploids, however, the formalism is only approximate. This is because selection in
continuous time causes deviations from HW equilibrium (unless Malthusian fitness is
additive, mij = mi +mj, corresponding to the assumption of no dominance). Since
deviations are small for weak selection, both formalisms usually produce equivalent
results.
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Sir Ronald A. Fisher, 1890–1962, is well-known for both his work in statistics and genetics.
He is one of the founding fathers of population genetics (together with JBS Haldane and S
Wright) that combined Darwinian selection and Mendelian inheritance in the so-called Mod-
ern Synthesis and led to the breakthrough of Darwinism in the early 20th century. Fisher’s
1930 article on The Genetical Theory of Natural Selection defined large parts of the field.
In statistics, Fisher’s key achievement was his invention of the analysis of variance, or
ANOVA. This statistical procedure allows to connect the observed deviations in experimen-
tal data to different controlled and uncontrolled underlying factors. It constituted a notable
advance over the prevailing procedure of varying only one factor at a time in an experiment.
Fisher summed up his statistical work in his book Statistical Methods and Scientific Inference
(1956). Fisher became Galton Professor of Eugenics at University College, London in 1933.
From 1943 to 1957 he was Balfour Professor of Genetics at Cambridge. He was knighted
in 1952 and spent the last years of his life conducting research in Australia (adapted from
Encyclopedia Britannica and Wikipedia).

• We can show that mean Malthusian fitness is non-decreasing. For diploids,

˙̄m =
∑
ij

mij(ṗipj + piṗj) = 2
∑
ij

mijpipj(mi − m̄)

= 2
∑
i

pimi(mi − m̄) = 2
∑
i

pi(mi − m̄)(mi − m̄) = 2VG (1.11)

where VG > 0 is the genetic variance in fitness. We thus see that the increase in mean
fitness is given by (twice) the current variance in fitness in the population. This is
the assertion of Fisher’s fundamental theorem of natural selection that goes back to
R.A. Fisher (1930) and has been discussed in many population genetic textbooks.
However, this theorem is only exact for a single locus in continuous time and only
holds approximately for discrete time and in more general evolutionary situations.

1.3 Mutation-selection models

The ultimate source of all genetic variation in a population is mutation. So far, we have
just assumed that genetic variation exists and have not modeled its creation explicitly.
Since selection is usually a much stronger force that mutation and leads to allele frequency
changes over shorter time scales, this is often a reasonable approximation. However, for a
more complete description of evolution over longer time scales, we need to include mutation
into the model.

Only mutation

Usually, mutation occurs during reproduction (or: the production of gametes) due to errors
in DNA copying. Each generation, there is a probability that an offspring individual does
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not inherit the allelic state of (one of) its parent(s), but rather a mutated allele. For a
single locus and two alleles, A and a, assume that there is a fixed probability µ that an
ancestor carrying the ancestral allele a produces an offspring with A allele. Vice-versa,
there is a probability ν that A mutates back to a during reproduction. If the frequency of
A alleles is p, the single-generation dynamics reads

∆p = p′ − p = µ(1− p)− νp (1.12)

with equilibrium (∆p = 0)

p = p̂ =
µ

µ+ ν
.

For an arbitrary number of alleles A1, . . . , Ak and mutation probability from allele Ai to
allele Aj denoted as µij, the mutation equation reads

p′i =
(
1−

∑
j

µij

)
pi +

∑
j

µjipj . (1.13)

The analogous equation in continuous time is

ṗi =
∑
j

(
ujipj − uijpi

)
, (1.14)

where uij are mutation rates per unit time.

Combining mutation and selection

In discrete time, we can simply include mutation as a separate step into the life cycle. We
define the allele frequency change during one generation, starting with newborn zygotes,
as pi → p

(s)
i → p′i with

p′i =
(
1−

∑
j

µij

)
p
(s)
i +

∑
j

µjip
(s)
j ; p

(s)
i =

wi

w̄
pi . (1.15)

The scheme applies to both haploids and (random mating) diploids, with wi as marginal
fitness for diploids. The first step accounts for viability selection, the second step for
mutation during reproduction. It is easy to check that mutation in HW equilibrium changes
the allele frequencies, but maintains HW proportions.

There are various ways to write down a mutation-selection equation in continuous
time. The most widely used formalism is simply to assume that mutation and selection
are independent processes that occur in parallel. This leads to the differential equation

ṗi = (mi − m̄)pi +
∑
j

(
ujipj − uijpi

)
(1.16)

combining Eqs. (1.10) and (1.14). The mi are Malthusian fitness values (marginal fitnesses
for diploids) and the µij have the interpretation of mutation rates per time unit.
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Mutation-selection balance

We can now ask how the combined action of mutation and selection changes the evolu-
tionary dynamics that we have classified above for selection on a single diploid locus. In
particular, we are again interested in the equilibrium points that will be reached. Although
the general mutation-selection equation allows for quite complex dynamics, things are eas-
ier in the biologically most relevant regime, where mutation is much weaker than selection.
In this case, mutation acts as a perturbation of the selection dynamics and (only) leads to
slight shifts of the equilibrium points. This is still relevant, however, for all cases where se-
lection alone leads to a monomorphic equlibrium that is turned into a stable polymorphism
by recurrent mutation.

For simplicity, we consider a single haploid locus in continuous time, with wildtype
allele a and deleterious mutant A, with fitnesses 1 and 1−s, respectively. The mutant A is
generated by recurrent mutation at rate u. Since mutants are rare and beneficial mutation
from mutant to wildtype is an unlikely event, we can ignore back mutation from A to a.
The dynamical equation for the mutant allele frequency p then reads

ṗ = (m− m̄)p+u(1− p) =
(
1− s− (1− ps)

)
p+u(1− p) = −sp(1− p)+u(1− p) . (1.17)

Setting ṗ = 0, we obtain the solutions p = 1 and the non-trivial stable equilibrium at

p̂ =
u

s
. (1.18)

Analogous results apply in discrete time and for diploids (with the heterozygous fitness hs
replacing s). The equilibrium mean fitness in the population follows as

ˆ̄m = 1− p̂s = 1− u . (1.19)

The difference between the mean fitness and the maximal fitness in the population is also
called the mutation load Lm. We thus have

Lm = 1− (1− u) = u . (1.20)

Whereas the selection coefficient s (or by hs in a diploid heterozygote) serves as a measure
for the effect of a deleterious mutation on an individual, the mutation load Lm can be
seen as a measure of the effect of deleterious mutation on the population level. We see
that the mutation load depends (to leading order) only on the mutation rate, but not on
the fitness effects of the deleterious mutations. The reason is that a milder mutation with
small s will segregate at a higher frequency p̂ = u/s in the population. To leading order,
the effects of mutation frequency and mutation size on the mean fitness just cancel. This
is also called Haldane’s rule or the Haldane-Muller principle and has relevant consequences
for programs of public health that aim for an increase of population-level parameters like
the mean fitness. Indeed, according to the Haldane-Muller principle, the mean fitness in
a population is neither altered by eugenics (birth control for diseased people, effectively
increasing the deleterious fitness effect of a mutation) nor by a partial cure of a genetic
disease (reduction of s). For population-level fitness, mildly deleterious mutations are as
harmful as strongly deleterious ones. Only the reduction of mutation rates has a lasting
effect on mean fitness.
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JBS (John Burdon Sanderson) Haldane, 1892–1964, was a British geneticist, biometrician,
physiologist, and popularizer of science who opened new paths of research in population
genetics and evolution. Together with R.A. Fisher and Sewall Wright, but in separate math-
ematical arguments, he related Darwinian evolutionary theory and Gregor Mendel’s laws of
heredity. Haldane also contributed to the theory of enzyme action and to studies in human
physiology. He possessed a combination of analytic powers, literary abilities, a wide range of
knowledge, and a force of personality that produced numerous discoveries in several scientific
fields and proved stimulating to an entire generation of research workers.
Haldane announced himself a Marxist in the 1930s but later became disillusioned with the
official party line and with the rise of the controversial Soviet biologist Trofim D. Lysenko. In
1957 Haldane moved to India, where he took citizenship and headed the government Genetics
and Biometry Laboratory in Orissa (adapted from Encyclopedia Britannica).

Herrmann Joseph Muller 1890–1967, Nobel laureate in Medicine (1946) for his discovery of
the mutagenic effect of X-rays was very concerned about the reduction of mean fitness in
humans by radiation, also due to nuclear fallout caused by nuclear testing. Together with
fellow scientists, he was a vocal critic of nuclear weapons testing (from Wikipedia).

1.4 Recombination

In diploid organisms recombination happens during meiosis (the production of gametes).
Recombination mixes paternal and maternal material before it is transferred to the next
generation. Each gamete that is produced by an individual therefore contains material from
the maternal and the paternal side. To see what this means, consider your two chromosomes
number 1, one of which came from your father and one from your mother. The one that
stems from your father is in fact a mosaic of pieces from his mother and his father, i.e., your
two paternal grandparents. In humans, these mosaics chromosomes typically consist of 2-10
chunks or recombination blocks. Chromosomes that do not recombine are not mosaics. The
Y -chromosome does not recombine at all, males inherit it completely from their father and
paternal grandfather, etc. Mitochondrial DNA also does not normally recombine, both
females and males inherit mitochondria from their mother, maternal grandmother, etc.
The X-chromosome only recombines when it is in a female.

There are various mechanisms for recombination. The most well-known one is cross-
ing over, where matching regions in homologous chromosomes (which pair during meiosis)
experience a double strand break and subsequently are reconnected to the other chromo-
some. There are other recombination mechanisms like gene conversion, where a stretch of
DNA is copied from one chromosome to the matching region of its homologous partner.
Exchange of genetic material can also happen in haploid individuals. In this case two
different individuals exchange pieces of their genome.
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Linkage

Mendel’s second law (of independent assortment) states that genes are inherited indepen-
dently of each other. It means that the probability of inheriting a gene at some locus A
from one grandmother is independent of whether or not a gene at a different locus B has
been inherited from the same grandmother. This “law” is generally only true for gene
loci that are located on different chromosomes: they are unlinked. On the other hand, if
genes are on the same chromosome, they are said to be physically linked. Linked genes
are not inherited independently of each other. In particular, if gene loci are very close to
each other, recombination between them is rare and they are typically inherited together.
Mathematically, this is expressed by the recombination fraction r = rAB between loci A
and B, which defines the probability that genes inherited from different grandparents at
these loci end up on the same parental gamete (sperm, egg, pollen) that contributes to the
offspring genotype,

(
a1b1
a2b2

)
−→


a1b1
a2b2

}
freq. 1

2
(1− r) each

a1b2
a2b1

}
freq. 1

2
· r each

. (1.21)

Here, a1 and b1 (res. a2 and b2) do not denote an allelic state, but only the origin of the
gene either from grandparent 1 or 2.

• r is often also called a recombination rate, but it is really a probability in discrete
generation models. We generally have r = 1/2 as upper limit for unlinked loci on
different chromosomes and 0 ≤ r < 1/2 for linked loci.

• We can define a molecular recombination probability ρ as the probability for recom-
bination between neighboring base pairs along a chromosome. Typical values are
ρ ≈ 10−8 per generation. However, ρ generally depends strongly on the genomic
position x. The estimation of recombination maps ρ(x) from data is an important
task of genomics.

• For a given recombination map, we can define a recombination distance d along a
chromosome in units of Morgans (named after Thomas Morgan). A distance of d =
1M indicates that there is on average one recombination breakpoint per generation
within the stretch (e.g., due to crossing over). Typical lengths of chromosome regions
measure in centi-Morgans (cM).

• The recombination fraction r between loci on the same chromosome is the probability
of an odd number of recombination breakpoints between these loci. Ignoring interfer-
ence of recombination events in neighboring regions, r relates to the recombination
distance d via Haldane’s mapping function

r =
1

2

(
1− exp[−2d]

)
. (1.22)
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Linkage disequilibrium

For simplicity, we focus on the case of two loci, A and B, with two alleles each, {a,A}
and {b, B}. There are then 4 gametes (or haplotypes) {ab, aB,Ab,AB}, with frequencies
denoted {Pab, PaB, PAb, PAB, }. The allele frequencies derive as

Pa = Pab + PaB ; PA = 1− Pa = PAb + PAB , (1.23)

and analogously for the B locus. As a measure of non-random association of alleles at
different loci on the same gamete (or haplotype), we define the linkage disequilibrium
(LD). E.g., for alleles A and B,

DAB = PAB − PAPB

= PAB(PAB + PAb + PaB + Pab)− (PAb + PAB)(PaB + PAB)

= PABPab − PAbPaB . (1.24)

It is easy to verify that

D := DAB = Dab = −DAb = −DaB ,

such that LD between two biallelic loci is measured by a single scalar number (this is more
complex for more alleles or more loci, see e.g. chapter 5 of the book by R. Bürger). If the
linkage disequilibrium is zero, D = 0, we say that the alleles are in linkage equilibrium (LE).
Note that linkage and linkage disequilibrium are concepts on different levels. While linkage
is a property of loci and manifests in each individual, linkage disequilibrium is a population
property and related to allele/haplotype frequencies. Unlinked loci can certainly have non-
zero linkage disequilibria among their alleles, while alleles at linked loci (even with r = 0)
can be in linkage equilibrium.

Recombination dynamics

Consider the two-locus model as described above. Without mutation or selection (or drift),
the single-locus allele frequencies in the population stay constant, P ′

A = PA, etc. However,
recombination will change the haplotype frequencies. Assuming HW proportions in the
germ cells prior to meiosis (and recombination), we obtain

P ′
AB = (1− r)PAB + r · PAPB = PAB − r ·D . (1.25)

Indeed, a fraction of (1 − r) of all gametes that contribute to the new generation has
not undergone any recombination. In this part of the population, haplotype frequencies
maintain their value from the previous generation. Conversely, a fraction of r of new
gametes are recombination products. In HW equilibrium, the probability for them to
result in a AB haplotype is PAPB. For the change in linkage disequilibrium, we obtain

D′ = P ′
AB − P ′

AP
′
B = (1− r)PAB + r · PAPB − PAPB = (1− r) ·D . (1.26)
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• We thus see that for r > 0 linkage disequilibrium decays to zero at geometric rate
(1− r). The population approaches linkage equilibrium, D = 0, among all alleles.

• Note that, in contrast to HW equilibrium, linkage equilibrium among alleles at dif-
ferent loci is not reached in a single generation, but only asymptotically – even for
unlinked loci with r = 1/2.

Recombination and selection

Consider the following fitness scheme for diploid individuals

BB Bb bb
AA wABAB wABAb wAbAb

Aa wABaB wABab wAbab

aa waBaB waBab wabab

,

where we assume that the fitness of a genotype depends only on the number and type of
alleles in the genotype, but not on the association of the allele to a particular haplotype (no
position effect). I.e., the fitness of the diploid genotype (Ab, aB) is the same as the one of
(AB, ab). Assuming HW proportions in zygote state, marginal fitness values for the 2-locus
haplotypes follow in the usual way, wAB = wABAB PAB+wABAb PAb+wABaB PaB+wABab Pab,
etc. The mean fitness is

w̄ = wAB PAB + wAb PAb + waB PaB + wab Pab .

Like for the mutation-selection model, we can construct a recombination-selection model by
including both events as separate steps into a life cycle. Since random mating decomposes
whole genotype frequencies into haplotype frequencies, this can be done on the level of
haplotypes. Starting with zygotes, we first have selection, followed by recombination during
reproduction. This results in

P ′
AB = P̂AB − rD̂ , (1.27a)

D′ = (P̂AB − rD̂)(P̂ab − rD̂)− (P̂Ab + rD̂)(P̂aB + rD̂)

= P̂ABP̂ab − P̂AbP̂aB − rD̂ , (1.27b)

and similar expressions for the other haplotype frequencies. P̂.. and D̂ are the values for
the frequencies and for LD after selection. We have

P̂AB =
wAB

w̄
PAB .

For D̂, we need to consider that recombination occurs in the diploid phase after selection
and get

D̂ = P̂ABPab − P̂aBPAb =
wABab

w̄

(
PABPab − PAbPaB

)
=

wABab

w̄
D
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resulting in

D′ =
wABwab

w̄2
PABPab −

waBwAb

w̄2
PAbPaB − r

wABab

w̄
D (1.28)

Assume that, initially, D = PABPab − PAbPaB = 0. Eq. (1.28) shows that selection will
create positive or negative LD, depending on the fitness values for haplotypes and on the
so-called level of epistasis. We have

wABwab − wAbwaB


> 0 positive epistasis, creates positive LD D′ > 0

= 0 no epistasis, maintains LE D′ = D = 0

< 0 negative epistasis, creates negative LD D′ < 0 .

(1.29)

Epistasis vanishes if all genotype fitnesses are multiplicative across loci (wABAb = vAAvBb,
etc). In this case, the dynamics forD = 0 (on the LE manifold) simplifies to an independent
single-locus dynamics at both loci,

P ′
A = (vA/v̄A)PA,

with vA = vAAPA + vAaPa and v̄A = vAAP
2
A + 2vAaPAPa + vaaP

2
a . The result shows under

which conditions the use of simple single locus models is meaningful in complex biological
scenarios: if fitness epistasis can be ignored and if loci are in LE. Furthermore, even if
starting conditions are not in LE, but D = 0 for all equilibria, we can use the single-locus
formalism to describe the equilibrium structure and the long-term dynamics.
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2 Genetic Drift

In the first part of the lecture, we have described the evolutionary dynamics using a de-
terministic framework that does not allow for stochastic fluctuations of any kind. In a
deterministic model, the dynamics of allele (or genotype) frequencies is governed by the
expected values: mutation and recombination rates determine the expected number of
mutants or recombinants, and fitness defines the expected number of surviving offspring
individuals. In reality, however, the number of offspring of a given individual (and the
number of mutants and recombinants) follows a distribution. Altogether, there are three
possible reasons why an individual may have many or few offspring:

• Good or bad genes: the heritable genotype determines the distribution for the number
of surviving offspring. Fitness, in particular, is the expected value of this distribution
and determines the allele frequency change due to natural selection.

• Good or bad environment: the offspring distribution and the fitness value may also
depend on non-heritable ecological factors, such as temperature or humidity. These
factors can be included into a deterministic model with space- or time-dependent
fitness values. They can also be stochastic, but typically affect all individuals of the
population.

• Good or bad luck: the actual number of offspring, given the distribution, will depend
on random factors that are not controlled by either the genes nor the external envi-
ronment: chance events that typically affect single individuals. This gives rise to a
stochastic component in the change of allele frequencies: random genetic drift.

We are interested in the evolutionary change in the number of individuals that belong to
a certain class, given the genotypes and environmental parameters. Because of the law
of large numbers, genetic drift can be ignored if and only if the number of individuals in
each class tends to infinity (or if the variance of the offspring distribution is zero). Note,
however, that genetic drift may be relevant even in infinite populations if the number of
individuals in a focal allelic class is small.

2.1 The Wright-Fisher model

TheWright-Fisher model (named after Sewall Wright and Ronald A. Fisher) is the standard
population genetic model for genetic drift. We will introduce the model for a single locus
in a haploid population of constant size N . Further assumptions are no mutation and no
selection (neutral evolution) and discrete generations. The life cycle is as follows:

1. Each individual in the parent generation produces an equal and very large number of
gametes (or seeds). In the limit of seed number → ∞, we obtain a so-called infinite
gamete pool.

2. We sample N individuals from this gamete pool to form the offspring generation.
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Sewall Wright, 1889–1988, was an American geneticist. Wright’s earliest studies included
investigation of the effects of inbreeding and crossbreeding among guinea pigs, animals that
he later used in studying the effects of gene action on coat and eye color, among other
inherited characters. His papers on inbreeding, mating systems, and genetic drift make
him a principal founder of theoretical population genetics, along with R.A. Fisher and JBS
Haldane. Wright’s most eminent contribution to population genetics is his concept of genetic
drift and his development of mathematical theory combining drift with the other evolutionary
forces. He was also the inventor/discoverer of key concepts like the fitness landscape and the
inbreeding coefficient and originated a theory to guide the use of inbreeding and crossbreeding
in the improvement of livestock (adapted from Encyclopedia Britannica and Wikipedia).

Obviously, this just corresponds to multinomial sampling with replacement directly from
the parent generation according to the rule:

• Each individual from the offspring generation picks a parent at random from the
previous generation and inherits the genotype of the parent.

Remarks

• Mathematically, the probability for k1, . . . , kN offspring for individual number 1, . . . , N
in the parent generation is given by the multinomial distribution with

Pr
[
k1, . . . , kN

∣∣∑
iki = N

]
=

N !∏
i ki!N

N
. (2.1)

• The number of offspring of a given parent individual is binomially distributed with
parameters n = N (number of trials) and p = 1/N (success probability):

Pr
[
k1
]
=

(
N
k1

)(
1

N

)k1 (
1− 1

N

)N−k1

.

• Under the assumption of random mating, a diploid population of size N can be
described by the haploid model with size 2N , if we follow the lines of descent of all
gene copies separately. Technically, we need to allow for selfing with probability 1/N .

• The Wright-Fisher model can easily be extended to non-constant population size
N = N(t), simply by taking smaller or larger samples to generate the offspring
generation.

• Inclusion of mutation, selection, and migration (population structure) is straightfor-
ward, as shown in later sections.
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2.2 Consequences of genetic drift

Genetic drift is the process of random changes in allele frequencies in populations. We
will study its effects using the Wright-Fisher model. To this end, consider a single locus
with two neutral alleles a and A in a diploid population of size N . We thus have a haploid
population size (= number of gene copies) of 2N . We denote the number of A alleles in
the population at generation t as nt and its frequency as pt = nt/2N . The transition
probability from state nt to state nt+1 ∈ {0, 1, . . . , 2N} is given by

Pr[nt+1|nt] =

(
2N
nt+1

)
·
( nt

2N

)nt+1

·
(
1− nt

2N

)2N−nt+1

. (2.2)

Some elementary properties of this process are:

1. For the expected number of A alleles, we have E[nt+1|nt] = 2N · nt

2N
= nt , and thus

E[pt+1] = E[pt] .

The expected allele frequency is constant. We can also express this in terms of the
expected change in allele frequencies as E[δpt] = E[pt+1 − pt] = 0.

2. For the variance among replicate offspring populations from a founder population
with frequency pt = nt/2N of the A allele, we obtain: Var[nt+1|nt] = 2Npt(1 − pt)
and thus

V := Var[pt+1|pt] =
pt(1− pt)

2N
.

The variance is largest for pt = 1/2. In terms of allele frequency changes, we also
have Var[δpt] = Var[pt+1 − pt] = Var[pt+1|pt] = V .

3. There are two absorbing states of the process: Fixation of the A allele at p = 1 and
loss of the allele at p = 0. We can determine the fixation probability pfix at p = 1 as
follows. Assume that we start in state p0 = i/2N . Since any process will eventually
be absorbed in either p = 0 or p = 1, we have

lim
t→∞

E[pt] = p0 = pfix · 1 + (1− pfix) · 0 ⇒ pfix = p0 .

In particular, the fixation probability of a single new mutation in a population is
pfix = 1/2N .

Random genetic drift has consequences for the variance of allele frequencies among and
within populations. For the variance among colonies that derive from the same ancestral
founder population with allele frequency p0, we have V = p0(1 − p0)/2N after a single
generation. After a long time, we get

V∞ = lim
t→∞

(
E[(pt)

2]−
(
E[pt]

)2)
= p0 − p20 = p0(1− p0) .
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The variance among populations thus increases to a finite limit. To measure variance
within a population, we define the homozygosity Ft and the heterozygosity Ht as follows

Ft = p2t + (1− pt)
2 ; Ht = 1− Ft = 2pt(1− pt) .

The homozygosity (heterozygosity) is the probability that two randomly drawn individuals
carry the same (a different) allelic state, where the same individual may be drawn twice
(i.e. with replacement). We obtain the single-step iteration

Ft =
1

2N
+
(
1− 1

2N

)
Ft−1

Indeed, if we take two random alleles (with replacement) from the population in generation
t, the probability that we have picked the same allele twice is 1/2N . If this is not the case,
we choose parents for both alleles in the previous generation t − 1. By definition, the
probability that these parents carry the same state is Ft−1. From this we get for the
heterozygosity

Ht =
(
1− 1

2N

)
Ht−1 =

(
1− 1

2N

)t

H0 ≈ H0 exp[−t/2N ] .

We see that drift reduces variability within a population and Ht → 0 as t → ∞. The char-
acteristic time for approaching a monomorphic state is given by the (haploid) population
size. We can derive the half-life for Ht as follows

Ht

H0

≈ exp[−t1/2/2N ] :=
1

2
⇒ t1/2 = 2N log[2] ≈ 1.39N.

The half-life scales with the population size. Note that heterozygosity and homozygosity (as
defined here) should not be confused with the frequency of heterozygotes and homozygotes
in a population. Both quantities only coincide under the assumption of random mating.
For this reason, some authors (e.g. Charlesworth and Charlesworth 2010) prefer the term
genetic diversity for Ht.

2.3 Neutral theory

In a pure drift model, genetic variation within a population can only be eliminated, but
never created. To obtain even the most basic model for evolution, we need to include
mutation as the ultimate source for new variation. These two evolutionary forces, mu-
tation and drift, are the only ingredients of the so-called neutral theory, developed by
Motoo Kimura in the 50s and 60s. Kimura famously pointed out that models without
selection already explain much of the observed patterns of polymorphism within species
and divergence between species. Importantly, Kimura did not claim that selection is not
important for evolution. It is obvious that purifying selection is responsible for the main-
tenance of functional important parts of the genome (e.g. in coding regions). However,
Kimura claimed that most differences that we see within and among populations are not
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Figure 2.1: Frequency curve of one allele in a Wright-Fisher Model. Population size is
2N = 2000 and time is given in generations. The initial frequency is 0.5.

influenced by selection. Today, selection is thought to play an important role also for these
questions. However, the neutral theory is the standard null-model of population genetics.
This means, if we want to make the case for selection, we usually do so by rejecting the
neutral hypothesis. This makes understanding of neutral evolution key to all of population
genetics.

Motoo Kimura, 1924–1994, published several important, highly mathematical papers on ran-
dom genetic drift that impressed the few population geneticists who were able to understand
them (most notably, Wright). In one paper, he extended Fisher’s theory of natural selection
to take into account factors such as dominance, epistasis and fluctuations in the natural envi-
ronment. He set out to develop ways to use the new data pouring in from molecular biology
to solve problems of population genetics. Using data on the variation among hemoglobins and
cytochromes-c in a wide range of species, he calculated the evolutionary rates of these proteins.
Extrapolating these rates to the entire genome, he concluded that there could not be strong
enough selection pressures to drive such rapid evolution. He therefore decided that most
evolution at the molecular level was the result of neutral processes like mutation and drift.
Kimura spent the rest of his life advancing this idea, which came to be known as the “neutral
theory of molecular evolution” (adapted from http://hrst.mit.edu/groups/evolution.)
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Mutation schemes

There are three widely used schemes to introduce (point) mutations to a model of molecular
evolution:

1. With a finite number of alleles, we can define transition probabilities from any allelic
state to any other state. For example, there may be k different alleles Ai, i = 1, . . . , k
at a single locus and a mutation probability from Ai to Aj given by µij. Mutation
according to this scheme is most easily included into the Wright-Fisher model as an
additional step on the level of the infinite gamete pool, just like in the deterministic
model (1.13). We then obtain the frequencies in the next generations by multinomial
sampling with the allele frequencies after mutation.

2. If we take a whole gene as our locus, we get a very large number of possible alleles
if we distinguish different amino acid sequences. In particular, back mutation to an
ancestral allelic state becomes very unlikely. In this case, it makes sense to assume
an effectively infinite number of alleles in an evolutionary model,

A1 → A2 → A3 → . . .

Usually, a uniform mutation rate u from one allelic state to the next is assumed in
the infinite alleles model.

3. In the infinite alleles model, we assume that the latest mutation erases all the memory
of the previous state. Only the latest state is visible. However, for a stretch of DNA,
point mutation rates at a single site (or nucleotide position) are very small. We can
thus assume that subsequent point mutations will always happen at different sites
and remain visible. This leads to the so-called infinite sites model for mutation that
is widely applied in molecular evolution. In particular, under the assumptions of
the infinite sites model (no “double hits”), we can count the number of mutations
that have occurred in a sequenced region – given that we have information about the
ancestral sequence.

Predictions from neutral theory

We can easily derive several elementary consequences of neutral theory, given one of the
mutation schemes above.

• Under the infinite sites model, new mutations enter a population at a constant rate
2Nu, where u is the mutation rate per generation and per individual for the lo-
cus (stretch of DNA sequence) under consideration. Since any new mutation has a
fixation probability of 1/(2N), we obtain a neutral substitution rate of

k = 2Nu · 1

2N
= u .
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Importantly, the rate of neutral evolution is independent of the population size and
also holds if N = N(t) changes across generations. As long as the mutation rate u can
be assumed to be constant, neutral substitutions occur constant in time. They define
a so-called molecular clock, which can be used for dating of phylogenetic events.

• For the evolution of the homozygosity Ft or heterozygosity Ht under mutation and
drift, we obtain for the infinite alleles model or the infinite sites model

Ft = 1−Ht = (1− u)2
(
1−

(
1− 1

2N

)
Ht−1

)
.

In the long term, the population will approach a state where both forces, mutation
and drift balance. We thus reach an equilibrium, Ht = Ht−1 = H, with

H =
1− (1− u)2

1− (1− u)2(1− 1/2N)
=

Θ(1− u/2)

Θ(1− u/2) + (1− u)2
≈ Θ

Θ+ 1

where Θ = 4Nu is the population mutation parameter. For the special case of
the expected nucleotide diversity, denoted as E[π], where the focus is on a single
nucleotide site, we usually have Θ ≪ 1. We can then further approximate

E[π] = Hnucleotide ≈ Θ.
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3 The coalescent

Until now, in our outline of the Wright-Fisher model, we have shown how to predict
the state of the population in the next generation (t + 1) given that we know the state
in the current generation (t). This is the classical approach in population genetics and
follows the evolutionary process forward in time. This view is most useful if we want to
predict the evolutionary outcome under various scenarios of mutation, selection, population
size and structure, etc. that enter as parameters into the model. However, these model
parameters are not easily available in natural populations. Usually, we rather start out
with data from a present-day population. In molecular population genetics, this will be
mostly sequence polymorphism data from a population sample. The key question then
becomes: What are the evolutionary forces that have shaped the observed patterns in our
data? Since these forces must have acted in the history of the population, this naturally
leads to a genealogical view of evolution backward in time. This view in captured by the
so-called coalescent process (or simply the coalescent), which has caused a small revolution
in molecular population genetics since its introduction in the 1980’s. There are three main
reasons for this:

• The coalescent is a valuable mathematical tool to derive analytical results that can
be directly linked to observable data.

• The coalescent leads to very efficient simulation procedures.

• Most importantly, the coalescent allows for an intuitive understanding of patterns
in DNA polymorphism data and of how these patterns result from evolutionary pro-
cesses.

For all these reasons, we will introduce this modern backward view of evolution in parallel
to the classical forward picture.

The coalescent process describes the genealogy of a population sample. The key event
of this process is therefore that, going backward in time, two or more individuals share a
common ancestor. We can ask, for example: what is the probability that two individuals
from the population today (t) have the same ancestor in the previous generation (t− 1)?
For the neutral Wright-Fisher model, this can easily be calculated because all individuals
pick a parent at random. If the population size is 2N the probability that two individuals
choose the same parent is

pc,1 = Pr[common parent one generation ago] =
1

2N
. (3.1)

Given the first individual picks its parent, the probability that the second one picks the
same one by chance is 1 out of 2N possible ones. This can be iterated into the past. Given
that the two individuals did not find a common ancestor one generation ago maybe they
found one two generations ago and so on. We say that the lines of descent from the two
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Figure 3.1: The coalescent of two lines in the Wright-Fisher Model

individuals coalescence in the generation where they find a common ancestor for the first
time. The probability for coalescence of two lineages exactly t generations ago is therefore

pc,t = Pr
[ two lineages coalesce
t generations ago

]
=

1

2N

(
1− 1

2N

)t−1

.

Mathematically, we can describe the coalescence time as a random variable that is geo-
metrically distributed with success probability 1

2N
. Figure 3.1 shows an example for the

common ancestry like it can be generated by a simulation animator, such as the Wright-
Fisher animator on www.coalescent.dk. In this case the history of just two individuals is
highlighted. Going back in time there is always a chance that they choose the same parent.
In this case they do so after 11 generations. In all the generations further back in time
they will automatically also have the same ancestor. The common ancestor in the 11th
generation in the past is therefore called the most recent common ancestor (MRCA).

The coalescence perspective is not restricted to a sample of size two but can be applied
to any number of individuals. For a sample of size n from the Wright-Fisher model of size
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2N , the probability of coalescence in a single generation is

p
(n)
c,1 = 1−

(
1− 1

2N

)
·
(
1− 2

2N

)
· · ·

(
1− n− 1

2N

)
= 1−

n−1∏
i=1

(
1− i

2N

)
=

1

2N

n−1∑
i=1

i+O
[( n

N

)2
]
=

1

2N

(
n

2

)
+O

[( n

N

)2
]
. (3.2)

We can interprete this result as follows. In a sample of size n, there are
(
n
2

)
possible

coalescence events between pairs of individuals. If we assume that n ≪ N , multiple
coalescence events in a single generation can be ignored and the leading order term in pnc,1
just accounts for the probability of a single pairwise coalescence event in the sample in
the previous generation. Multiple coalescence events and coalescence events of more than
two lineages simultaneously (so-called “multiple mergers”) only contribute to the error
term ∼ O[N−2], which can be ignored for small samples in a large population. In this
approximation, the coalescence probability after t generation in a sample of size n becomes

p
(n)
c,t ≈ 1

2N

(
n

2

)
·
(
1− 1

2N

(
n

2

))t−1

. (3.3)

We can then construct the genealogical history of the sample in a two-step procedure:

1. First, fix the topology of the coalescent tree. I.e., decide (at random), which pairs
of genealogical lineages from individuals in a sample coalesce first, second, etc., until
the MRCA of the entire sample is found.

2. Second, specify the times in the past when these coalescence events have happened.
I.e., draw a so-called coalescent time for each coalescent event. This is independent
of the topology.

3.1 Coalescence times

For the branch lengths of the coalescent tree, we need to know the coalescence times. For a
sample of size n, we need n−1 times until we reach the MRCA. As stated above, these times
are independent of the topology. Mathematically, we obtain these times most conveniently
by an approximation of the geometrical distribution by the exponential distribution for
large N :

• If X is geometrically distributed with small success probability p and t is large then

Pr[X ≥ t] = (1− p)t ≈ e−pt.

This is the distribution function of an exponential distribution with parameter p.
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Let tn be the time until the first coalescence occurs in a smaple of size n. This time is
geometrically distributed according to

Pr[tn > t] =

[
1−

(
n
2

)
2N

]t
=

[
1− n(n− 1)

4N

]t
. (3.4)

The mean waiting time until the first coalescence event is E[tn] = 4N/n(n − 1) and thus
proportional to the population size. It is standard to integrate this dependence into a
“coalescent time scale”

τ :=
t

2N
.

We can then take the limit N → ∞ to obtain a stochastic process with a continuous time
parameter τ . Coalescence times Tn := tn/2N in this limiting process are distributed like

Pr[Tn > τ ] = lim
N→∞

[
1−

(
n
2

)
2N

]2Nτ

= exp

[
−τ

(
n

2

)]
. (3.5)

In a sample of size n, the time to the first coalescence is thus exponentially distributed
with parameter λ = n(n−1)/2. The fact that in the coalescent the times are exponentially
distributed enables us to derive several important quantities.

• The time to the MRCA,

TMRCA(n) =
n∑

k=2

Tk,

is the sum of n−1 mutually independent exponentially distributed random variables.
Its expectation derives to

E[TMRCA(n)] =
n∑

k=2

E[Tk] =
n∑

k=2

2

k(k − 1)
= 2

n∑
k=2

( 1

k − 1
− 1

k

)
= 2

(
1− 1

n

)
. (3.6)

We have E[TMRCA(n)] → 2 for large sample sizes n → ∞. Note that E[TMRCA(2)] = 1,
so that in expectation more than half of the total time to the MRCA is needed for
the last two ancestral lines to coalesce.

• For the total tree length,

L(n) =
n∑

k=2

kTk,

we obtain the expected value

E[L(n)] =
n∑

k=2

k E[Tk] = 2
n∑

k=2

1

k − 1
= 2

n−1∑
k=1

1

k
. (3.7)

Increasing the sample size will mostly add short twigs to a coalescent tree. As a
consequence, also the total branch length

E[L(n)] ≈ 2(log(n− 1) + γ) ; γ = 0.577216 . . . .

increases only very slowly with the sample size (γ is the Euler constant).
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3.2 Polymorphism patterns

In order to generate DNA diversity patterns using the coalescent, we need to add mutations
to the process. This can be done according to any of the mutation schemes introduced in
section (2.3). Most frequently used is the infinite sites model, which we will discuss in the
following.

The key insight for the description of neutral DNA diversity using the coalescent is that
neutral mutations do not interfere with the genealogy: state (the genotype) and descent
(the genealogical relationships) are decoupled for neutral evolution. This is easy to see from
the time-forward dynamics, since parents carrying different variants of a neutral allele are
still equivalent concerning the distribution of their offspring in all future generations. If
we want to create a random neutral polymorphism pattern using the coalescent process,
we can therefore pick a genealogy first (as described in the previous section) and decide
on the state later on. This is done by so-called mutation dropping, where mutations are
added to all branches of the tree.

For the infinite sites mutation scheme, each mutation hits a new site (and thus leads
to a new allele) and all mutations on a genealogy remain visible. If a mutation occurs on a
branch of size i in the genealogy of n individuals, it will give rise to a polymorphism with
frequency i/n of the derived allele. This means: the mutant allele is seen in i out of n
sequences in the sample. Note that we do not need to know the precise time for the origin
of the mutations in the genealogy, all that is needed is the total number of mutations that
fall on each branch. On genealogical time scales (as opposed to phylogenetic time scales),
we can usually assume that the mutation rate u (per haploid individual and generation) is
constant.

For a branch of length l, we therefore directly get the number of neutral mutations
on this branch by drawing from a Poisson distributed with parameter 2Nlu. The factor
2N accounts for the fact that branch length l is measured on the coalescent time scale (in
units of 1/2N). In particular, the total number of mutations in an entire coalescent tree of
length L is Poisson distributed with parameter 2NLu. Let S be the number of segregating
(polymorphic) sites in a sample. Since each polymorphic site corresponds to exactly one
mutation on the tree under the infinite sites model, we have

Pr[S = k] =

∫ ∞

0

Pr[S = k|ℓ] · fL(n)(ℓ)dℓ =
∫ ∞

0

e−2Nℓu (2Nℓu)k

k!
· fL(n)(ℓ)dℓ .

For the expectation that means

E[S] =
∞∑
k=0

k Pr[S = k] =

∫ ∞

0

ℓθ

2
e−ℓθ/2

( ∞∑
k=1

(ℓθ/2)k−1

(k − 1)!

)
· fL(n)(ℓ)dℓ

=
θ

2

∫ ∞

0

ℓ fL(n)(ℓ)dℓ =
θ

2
E[L(n)] = θ

n−1∑
i=1

1

i
= anθ

(3.8)
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with

an =
n−1∑
i=1

1

i
, (3.9)

and where
θ = 4Nu

is the standard population mutation parameter. Note that the distribution of S does not
depend on the coalescent topologies, but only on the distribution of the coalescence times.

The site frequency spectrum

The total number S of polymorphic sites is the simplest so-called summary statistic of
polymorphism data. There are many more. In particular, we can ask for the number Si

of mutations that are observed in i out of n sequences in the sample. The expected value
E[Si] can be derived (in a lengthy calculation), with the pleasingly simple result

E[Si] =
θ

i
. (3.10)

Together, these numbers define the (expected) site frequency spectrum of sample taken
from a standard neutral population.

• The frequencies of the expected normalized site frequency spectrum are pi = 1/(ani).
They are independent of θ. The characteristic (1/i)-shape is a prime indicator of
“neutrality”.

• We can easily obtain an empirical site frequency spectrum from any polymorphism
data. This empirical spectrum can then be compared to the spectrum predicted under
neutrality. Note that we need data from many independent (unlinked) loci to observe
the expected spectrum. For any single locus, the spectrum can differ considerably,
because we only have a single coalescent history.

• To determine the size of a given polymorphism in the sample, we need to know the
ancestral state at the locus. In practice, this is inferred from a so-called outgroup
(usually a single consensus sequence from a closely related sister species). If the
ancestral state cannot be determined, we can work with the so-called folded site
frequency spectrum, with mutation classes S̃i = Si +Sn−i for i < n/2 and S̃i = Si for
i = n/2.

3.3 Coalescent and statistics

Coalescent trees show the genealogical relationships between two or more sequences that
are drawn from a population. This should not be confounded with a phylogenetic tree that
shows the relation of two or more species. Indeed, both “trees” have entirely different roles
for the theory of evolution. In phylogenetics, one is usually interested in the one “true
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tree” and the parameters of this tree (such as split times) are estimated from data. In
contrast, there is no single “true tree” for a set of individuals from a population. Indeed,
the genealogy will usually be different for different loci. For example, at a mitochondrial
locus your ancestor is certainly your mother and her mother. However, if you are a male,
the ancestor for the loci on your Y-chromosome is your father and his father. So the
genealogical tree will look different for a mitochondrial locus than for a Y-chromosomal
locus. But even for a single locus, we are usually not able to reconstruct a single “true
coalescence tree” and this is not the goal in coalescent studies. Instead, coalescent histories
are used as a statistical tool for inferences about an underlying model.

The general idea is as follow. We define an evolutionary model that depends on a
number of biological parameters (such as mutation rates, population sizes, selection co-
efficients). Under this model, we obtain a distribution of coalescent histories and (con-
sequently) a distribution of polymorphism patterns that is predicted under this model.
We can then compare measured data with the predicted distribution to make statistical
inferences. Usually, there is a twofold goal:

1. to reject (or not) the underlying model. This is true, in particular, for the neutral
model as the standard null model of population genetics.

2. to estimate model parameters. Note that the parameters of the coalescent tree (co-
alescent times, topology) are generally not model parameters. They are “integrated
out” in the statistical treatment.

In some easy cases (notably the neutral model), key aspects of the distribution of poly-
morphism patterns can be obtained analytically using coalescent theory. In many other
cases, this is no longer possible. However, even in these cases, the coalescent offers a highly
efficient simulation framework that is routinely used in statistical simulation packages.

Estimators for the mutation parameter θ

All population genetic models, whether forward or backward in time, depend on a set of
biological parameters that must be estimated from data. In the standard neutral model,
there are two such parameters: the mutation rate u and the population size N . However,
since both parameters only occur in the combination θ = 4Nu, the population mutation
parameter is effectively the only parameter of the model. From our derivation of the
expected site frequency spectrum, we easily obtain several estimators for θ. In principle,
we can use the total number of mutations of any size class to define an unbiased estimator
θ̂i,

E[Si] =
θ

i
−→ θ̂i := i · Si . (3.11)

In practice, widely used estimators are linear combinations across mutations of different
size classes. They can be distinguished according to the relative weight that is put on a
certain class. The most important ones are the following:
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1. Watterson’s estimator,

θ̂W :=
S

an
=

1

an

n−1∑
i=1

Si =
1

an

∑
1≤i≤n/2

S̃i , (3.12)

uses the total number of segregating sites and puts an equal weight on each mutation
class. The last equation expresses θ̂W in terms of frequencies of the folded spectrum.
Remember that the distribution of S – and thus of θ̂W – is independent of the
coalescent topologies, but only depends on the coalescent times.

2. Let πij be the number of differences among two sequences i and j from our sample.
We have E[πij] = E[S(n = 2)] = θ. If the sample size is just two, this corresponds to
Watterson’s estimator. In a larger sample, we can still take the pairwise difference
as our basis and average over all n(n − 1)/2 pairs. This leads to the diversity-based
estimator (sometimes also called Tajima’s estimator),

θ̂π :=
2

n(n− 1)

∑
i<j

πij . (3.13)

We can also express θ̂π in terms of the (folded) frequency spectrum as follows,

θ̂π =

(
n

2

)−1 n−1∑
i=1

i(n− i)Si =

(
n

2

)−1 ∑
1≤i≤n/2

i(n− i)S̃i . (3.14)

Whereas Watterson’s estimator weights all frequency classes equally, θ̂π puts the
highest weight on classes with an intermediate frequency. In contrast to θ̂W, it also
depends on the distribution of tree topologies. The estimator is often also just written
as π̂.

3. Fay and Wu’s estimator,

θ̂H :=

(
n

2

)−1 n−1∑
i=1

i2Si , (3.15)

puts a hight weight on mutation classes of the unfolded spectrum with a high fre-
quency of the derived allele. In contrast to the other estimators, it is not a summary
statistic of the folded spectrum and thus requires knowledge of the ancestral state.

4. Finally, the singleton estimator θ̂s uses the singletons of the folded spectrum,

θ̂s :=
n− 1

n

(
S1 + Sn−1

)
=

n− 1

n
S̃1 . (3.16)

It has all its weight at both ends of the unfolded spectrum.
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Test statistics for neutrality tests

Estimators of any model parameter, such as θ, will only produce meaningful results if
the assumptions of the underlying model hold. In our case, we have assumed standard
neutral evolution. In addition to the absence of selection, this includes the assumptions
of a constant population size and no population structure. But how can we know whether
these assumptions do hold (at least approximately) for a given data set? This question asks
for a test of the model assumptions. As it turns out, the availability of various different
estimators of the same quantity θ is helpful for the construction of such a test.

The key idea is to consider the difference among two different estimators, such as
θ̂π−θ̂W. Under standard neutrality, this quantity should be close to zero, whereas significant
deviations indicate that the model should be rejected. The most widely used test statistic
that is constructed in such a way is Tajima’s D,

DT :=
θ̂π − θ̂W√

Var[θ̂π − θ̂W]
. (3.17)

The denominator of DT is used for normalization and makes the distribution of the statistic
(almost) independent of θ and of the sample size. Tajima has shown that DT is approxi-
mately β-distributed. Today, however, the exact distribution under the standard neutral
null model is usually obtained (resp. approximated to arbitrary precision) by computer
simulations. For a given significance level α, one can then specify the critical upper and
lower bounds for DT, beyond which the null model should be rejected. Test statistics that
are constructed in a similar way are Fu and Li’s D,

DFL :=
θ̂W − θ̂s√

Var[θ̂W − θ̂s]
(3.18)

and Fay and Wu’s H,

HFW :=
θ̂π − θ̂H√

Var[θ̂π − θ̂H]
. (3.19)

To understand, which kind of deviations from the standard neutral model are picked up
by the three summary statistics, it is instructive to consider the contribution of the site
frequency classes Si to the numerator of each statistic. For example, DT will be negative
if we have an excess of very low or very high frequency alleles, whereas it will be positive
if many sites segregate at intermediate frequencies.
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4 Effective population size

In the previous chapter, we have constructed the coalescent for an idealized Wright-Fisher
population. Our assumptions have included the following:

1. neutral evolution with identical offspring distribution for all individuals,

2. a constant population size,

3. no population structure: i.e. offspring choose their parents with equal probability for
all individuals from the parent generation,

4. offspring choose their parents independently of each other: as a consequence, the
distribution of offspring for each parent is binomial (and approximately Poisson),

5. generations are discrete, individuals are haploid, and there are no separate sexes . . .

One may wonder whether such a simplified theory can tell us much about nature. In sta-
tistical terms: if we construct a null model under a large number of assumptions, rejecting
this null model does not provide us with a lot of information. Indeed, any of the assump-
tions could have been violated – for most biological populations we even know in advance
that several assumption do not hold.

Luckily, the situation is not as bleak as it may look and we can often still use the theory
that we have developed. As it turns out, many biological factors can be taken care of by an
appropriate adjustment of the model parameters. This leads to the concept of the effective
population size.

4.1 The concept

The number of individuals in a natural population is referred to as the census population
size or per-capita population size. Prima facie, it seems natural to identify the number of
individuals (or individual gene copies) in a Wright-Fisher model with the census population
size of a natural population. However, as it turns out, this is usually not appropriate. The
point of the Wright-Fisher model (and similar models, like the Moran model) is to capture
genetic drift. It should therefore be chosen in such a way that the strength of drift in the
natural system is equal to the strength of drift in the model. The idea is to choose the size
of an ideal Wright-Fisher population in such a way, that this correspondence holds. The
size that is needed is called the effective population size. The remaining question is which
measure for genetic drift we should use. Unfortunately, there is more than one measure,
which leads to some ambiguity in the definition of the effective population size. In general,
we use the following philosophy:

Let • be some measurable quantity that relates to the strength of genetic drift
in a population. This can be e.g. the neutral allele frequency variance (or stan-
dard deviation) between generations or the probability of identity by descent.
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Assume that this quantity has been measured in a natural population. Then
the effective size Ne of this population is the size of an ideal (neutral panmictic
constant-size equilibrium) Wright-Fisher population that gives rise to the same
value of the measured quantity •. To be specific, we call Ne the •-effective
population size.

With an appropriate choice of this measure we can then use a model based on the
ideal population to make predictions about the natural one. Although a large number of
different concepts for an effective population size exist, there are two that are most widely
used.

The coalescent effective population size

One of the most basic consequences of a finite population size - and thus of genetic drift -
is that there is a finite probability for two randomly picked individuals in the offspring gen-
eration to have a common ancestor in the parent generation. This is the single-generation
probability of identity by descent, which translates into the single-generation coalescence
probability of two lines pc,1 in the context of the coalescent. If we assume that this proba-
bility is the same for all pairs of individuals (no population structure) and constant in time
(no demographic changes), we can iterate the single-generation step across generations to
obtain the coalescence probability after t generations, pc,t = pc,t(1− pc,1)

(t−1), as a simple
function of pc,1. For the ideal Wright-Fisher model with 2N (haploid) individuals, we have
pc,1 = 1/2N . Knowing pc,1 in a natural population, we can thus define the coalescent
effective population size

N (c)
e =

1

2pc,1
. (4.1)

All coalescent times are directly proportional to this size. One also says that N
(c)
e fixes the

coalescent time scale.

The variance effective population size

Another key aspect about genetic drift is that it leads to random variations in the allele
frequencies among generations. Assume that p is the frequency of an allele A in an ideal
Wright-Fisher population of size 2N . In Section 2, we have seen that the number of A
alleles in the next generation, 2Np′, is binomially distributed with parameters 2N and p,
and therefore

VarWF[p
′] =

1

(2N)2
Var[2Np′] =

p(1− p)

2N
.

For a natural population where the variance in allele frequencies among generations is
known, we can therefore define the variance effective population size as follows

N (v)
e =

p(1− p)

2Var[p′]
. (4.2)
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The inbreeding and variance effective sizes are often identical or at least very similar.
However, there are exceptions and then the correct choice of an effective size depends on
the context and the questions asked. Finally, there are also scenarios (e.g. changes in
population size over large time scales) where no type of effective size is satisfactory. We
then need to abandon the most simple ideal models and take these complications explicitly
into account.

Estimating the effective population size

For the Wright-Fisher model, we have seen that the expected number of segregating sites
S in a sample is proportional to the mutation rate and the total expected length of the
coalescent tree, E[S] = uE[L]. The expected tree-length E[L], in turn, is a simple function

of the coalescent times, and thus of the coalescent effective population size N
(c)
e . Under

the assumption of (1) the infinite sites model (no double hits), (2) a constant N
(c)
e over the

generations (constant coalescent probability), and (3) a homogeneous population (equal
coalescent probability for all pairs) we can therefore estimate the effective population size
from polymorphism data if we have independent knowledge about the mutation rate u (e.g.

from divergence data). In particular, for a sample of size 2, we have E[S2] = 4N
(c)
e u and

thus

N (c)
e =

E[S2]

4u
.

In a sample of size n, we can estimate the expected number of pairwise differences to be
Ê[S2] = θ̂π (see (3.13)) and obtain the estimator of N

(c)
e from polymorphism data as

N̂ (c)
e =

θ̂π
4u

.

A similar estimate can be obtained from Watterson’s estimator θ̂W, see Eq. (3.12). While

the assumption of the infinite sites model is often justified (as long as 4N
(c)
e un ≪ 1, with un

the per-nucleotide mutation rate), the assumption of constant and homogeneous coalescent
rates is more problematic. We will come back to this point in the next section when we
discuss variable population sizes and population structure.

4.2 Factors affecting Ne

Let us now discuss the main factors that influence the effective population size. For sim-
plicity, we will focus on N

(c)
e . We will always assume that there is only a single deviation

from the ideal Wright-Fisher population.

Offspring variance

One assumption of the ideal model is that the offspring distribution for each individual
is binomial (approximately Poisson). In natural populations, this will usually not be the
case. Note that the average number of offspring must always be 1, as long as we keep the
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(census) population size constant. The offspring variance σ2, however, can take any value
in a wide range. Let xi be the number of offspring of individual i with

∑
i xi = 2N . Then

the probability that individual i is the parent of two randomly drawn individuals from the
offspring generation is xi(xi−1)/(2N(2N−1)). Thus, the expected probability for identity
by descent of two random offspring individuals is

pc,1 = E

[ 2N∑
i=1

xi(xi − 1)

2N(2N − 1)

]
=

2N∑
i=1

E

[
xi(xi − 1)

2N(2N − 1)

]
. (4.3)

With E[xi] = 1 and E[x2
i ]−

(
E[xi]

)2
= E[x2

i ]− 1 = σ2 and the definition (4.1) we arrive at

N (c)
e =

1

2pc,1
=

N − 1/2

σ2
≈ N

σ2
. (4.4)

By a slightly more complicated derivation (not shown), we can establish that the variance

effective population size N
(v)
e takes the same value in this case.

Separate sexes

A large variance in the offspring number leads to the consequence that in any single gener-
ation some individuals contribute much more to the offspring generation than others. So
far, we have assumed that the offspring distribution for all individuals is identical. Even
without selection, this is not necessarily the case. An important example is a popula-
tion with separate sexes and unequal sex ratios in the breeding population. Consider the
following example:

Imagine a zoo population of primates with 20 males and 20 females. Due to dominance
hierarchy only one of the males actually breeds. What is the inbreeding population size that
informs us, for example, about loss of heterozygosity in this population? 40? or 21??

Let, in general, Nf be the number of breeding females and Nm the number of breeding
males. Then half of the genes in the offspring generation will derive from the Nf parent
females and half from the Nm parent males. Now draw two genes at random from two
individuals of the offspring generation. The chance that they are both inherited from
males is 1

4
. In this case, the probability that they are copies from the same paternal gene

is 1
2Nm

. Similarly, the probability that two random genes are descendents from the same

maternal gene is 1
4

1
2Nf

. We thus obtain the probability of finding a common ancestor one

generation ago

pc,1 =
1

4

1

2Nm

+
1

4

1

2Nf

=
1

8

( 1

Nm

+
1

Nf

)
and an effective population size of

N (c)
e =

1

2pc,1
=

4
1

Nm
+ 1

Nf

=
4NfNm

Nf +Nm

.
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In our example with 20 breeding females and 1 breeding male we obtain

N (c)
e =

4 · 20 · 1
20 + 1

=
80

21
≈ 3.8.

The coalescent (or inbreeding) effective population size is thus much smaller than the
census size of 40 due to the fact that all offspring have the same father. Genetic variation
will rapidly disappear from such a population. In contrast, for an equal sex ratio of
Nf = Nm = N

2
we find N

(c)
e = N .

Fluctuating Population Sizes

Consider the evolution of a population with periodically varying size over a period of Tp

generations with valuesN0 toNTp−1. We can ask whether we can describe these fluctuations
by an averaged effective population size. Equating the probability that two lineages do not
coalesce during one period in the fluctuation model with a constant-size model, we obtain(

1− 1

2N0

)
· · ·

(
1− 1

2NTp−1

)
=

(
1− 1

2Ne

)Tp

(4.5)

We then have

1− 1

2Ne

=
[(

1− 1

2N0

)
· · ·

(
1− 1

2NTp−1

)]1/Tp

≈
[
exp

(
− 1

2N0

)
· · · exp

(
− 1

2NTp−1

)]1/Tp

= exp
(
− 1

2Tp

( 1

N0

+ . . .+
1

NTp−1

))
≈ 1− 1

2Tp

( 1

N0

+ . . .+
1

NTp−1

)
and get a (coalescent) effective population size of

N (c)
e =

1

2

1

p̄c,1
≈ Tp

1
N0

+ . . .+ 1
NTp−1

.

• The effective population size of a fluctuating population is thus given by the harmonic
mean of the population sizes over time. Other than the usual arithmetic mean, the
harmonic mean is most strongly influenced by single small values. E.g., if the Ni are
given by 100, 4, 100, 100, the arithmetic mean is 76, but we obtain a harmonic mean
of just N

(c)
e = 14.

• To justify the use of a constant effective size, we need to make sure that coalescence
times (and their distributions) in both models are equivalent. In general, this will be
the case if the population runs through many population-size cycles during a typical
coalescent time. I.e., we should have

Tp ≪
(
n

2

)−1

N (c)
e = E[Tn] (4.6)

(in per-generation scaling). This is typically fulfilled, for example, for species with
several generations per year and seasonal variation in population size.
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• Note that strict periodicity in population sizes is not required for the definition of
an average effective size. It is generally sufficient that the population sizes experi-
enced during time periods of E(Tn) are representative of a long-term distribution of
population sizes.

From the cases studies in this section, we see that most populations are genetically much
smaller than they appear from their census size, increasing the effects of drift. In terms of
the coalescent, the change to the effective size means that all coalescent trees are rescaled
by a factor Ne/N , but their shape and topology remain the same.

4.3 Larger demographic changes and population structure

We have seen in the previous section that short-term fluctuations in the population size can
be subsumed in an effective population size Ne that is the harmonic mean of the population
sizes over the period of the fluctuation. This holds as long as this period is short relative
to the typical coalescence time. This is no longer true, however, if population sizes change
over longer time scales or if there is spatial population structure.

Population growth or decline

If a population experiences long-term growth or decline, there is no equilibrium distribution
of population sizes across generations at all, invalidating the concept of an “equilibrium
effective size”. The simplest model is that of an exponentially growing (or declining)
population,

N(τ) = N0e
−λτ , (4.7)

where λ quantifies the speed of growth and we measure time τ in the backward direction.
For the coalescent, this means that two individuals at time τ coalesce in a single generation
with probability 1/2N(τ). For a growing population, N(τ) declines as we go back in time
and the frequency of pairwise coalescent events increases. Clearly, this cannot be repro-
duced by any model with a constant (effective) population size. Graphically, coalescent
trees are rescaled by a time-dependent instead of a constant factor. A typical coalescent
tree in an expanding population has reduced branch lengths near the root of the tree, as
shown in Figure 4.1. Although the shape of the coalescent trees is skewed by such a proce-
dure, their topology is not affected. We can now ask for the effect of such a time-dependent
rescaling on the expected summary statistics for the polymorphism pattern.

1. For a growing population, the rescaling will reduce “older” branches near the root of
the tree by a larger factor than “young” branches at the leaves. As a consequence,
most mutations will fall on branches near the leaves, where they affect only a single
individual in the sample. We thus obtain an excess of low-frequency polymorphisms
in the site-frequency spectrum relative to the standard neutral model. Looking at
the test statistics, we see that Tajima’s DT will be negative, while Fay and Wu’s
HFW will be positive.
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Figure 4.1: (A) The coalescent for a population of constant size and (B) for an expanding
population. Real time runs from top to bottom and coalescent time τ from bottom to top.

2. For a shrinking population, the rescaling reduces primarily the branches at the leaves.
We typically obtain trees with a deep split, where most of the time during the geneal-
ogy is spent for the last two lines to coalesce. Mutations on these branches produce
polymorphisms of any size (from 1 to n − 1) with an equal probability, resulting in
a flat site-frequency spectrum. In particular, the number of singletons is reduced
relative to the standard neutral model. In contrast to population growth, such a
pattern is usually characterized by a positive value of DT.

Population bottlenecks

A complex demographic scenario are so-called bottlenecks, where the population recovers
after an intermediate phase with a reduced population size. The consequences of such a
demographic history depends on the parameters of the bottleneck in a subtle way. This is
seen in two examples in Figure 4.2. On the one hand, a very strong and/or long reduction of
the population size can lead to full coalescence of the genealogy with a very high probability
during that phase. In this case, the genealogy never “feels” the larger population size
further back in time. Consequently, the polymorphism pattern of a very strong bottleneck
looks like the one of an expanding population. On the other hand, for a less severe or very
short reduction of the population size, two or more lineages will likely survive the bottleneck
wthout coalescing. As these lines enter the ancestral phase with large population size, the
time to full coalescence at the MRCA can be very long and the polymorphism pattern
can even mimic the one of a declining population. For intermediate bottleneck strengths,
both of these genealogical scenarios can occur with a high probability. We then get a mix
of patterns and a large increase in the variance of most summary statistics if we analyze
patterns from different loci along a chromosome. This variability of patterns makes it
difficult to rule out a bottleneck scenario if we want to infer selection as the cause for a
distorted pattern.
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Figure 4.2: Two cases in a bottleneck mode. (A) Only one ancestral line survives the
bottleneck. (B) Two or more lines survive which leads to different patterns in observed
data.

Population structure

So far, we have assumed that any two individuals from the population can coalesce (have
the same ancestor in the previous generation) with the same probability. This is rarely the
case in a natural population. Indeed, most populations are structured in the sense that the
probabilities for reproduction (forward in time) or coalescence (backward) depend on ad-
ditional external factors. One of the most important factors to cause population structure
is geographic space: individuals that live close to each other are more likely to be closely
related than individuals in distant regions. If individuals are no longer “exchangeable” in
this sense, this has important consequences on the genealogies.

In a simple scenario, we can think of a population that lives on two islands. The
subpopulations on each island are panmictic (i.e., there is no further fine-structure), but
individuals on different islands can only trace back to a common ancestor if there is mi-
gration in the ancestry of at least one of these individuals. We thus need to consider two
types of processes for the construction of genealogies: coalescence and (backward) migra-
tion. If N1 and N2 is the population size on island 1 and 2, respectively, and n1 and n2

the corresponding sample sizes from these islands, these genealogical events occur with the
following probabilities

p
(1)
c,1 =

(
n1

2

)
1

2N1

; p
(2)
c,1 =

(
n2

2

)
1

2N2

, (4.8)

p1→2
m,1 = n1m12 ; p21m,1 = n2m2→1, (4.9)

where mij is the probability that the parent of an individual on island i comes from island
j (the so-called backward migration rate). A full mathematical analysis of the resulting
genealogies is possible, but is beyond this lecture. Instead, we will focus on two limit cases
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Figure 4.3: Typical coalescent genealogies of a spatially structured population for (A) weak
and (B) strong migration and corresponding site-frequency spectra.

of weak or strong migration to understand the qualitative impact of geographic structure
on coalescent genealogies.

• If migration is very weak, the subsamples on both islands will most likely coalesce
independently before even the first migration event occurs in the genealogy. Only
after common ancestors on both islands have been reached, migration will eventually
occur on one of the long branches that trace further back in time. As a result, the
genealogy of the full sample typically shows a bipartite topology that separates both
subsamples. Mutations on the long branches at the root give rise to polymorphisms
at intermediate frequencies that show this partition (see Fig. 4.3).

• If migration is very strong, lines of descent typically change back and forth between
both island many times before even the first coalescent event occurs. They then
reach a so-called migration equilibrium, where each line at a given time is on island
1 or 2 with probability

p1 =
m21

m12 +m21

; p1 =
m12

m12 +m21

.

Coalescence of any two lineages (independently of the origin of the sampled individual
on island 1 or 2) can occur whenever both are on the same island,

pc,1 =

(
n1 + n2

2

)( p21
2N1

+
p22
2N2

)
.

Since this probability is independent of time, we can use it to define an effective
population size

Ne =

(
n1 + n2

2

)
1

2pc,1
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in the usual way. In the special case that the frequencies in the migration equilib-
rium are proportional to the population sizes, p1 = N1/(N1 +N2) etc., the effective
size reduces to the census-size, Ne = N1 + N2. The site-frequency spectrum of a
structured population with frequent migration is just the standard neutral one, with
the expected total diversity, π = 4Neu, adjusted to the (potentially) altered effective
size.

• The concept of a structured population can be used in many other contexts. For
example, one can define two classes of genes, depending on whether the individual
carrier is male or female, orN “islands” with 2 genes each to represent a population of
diploids. In both cases, “migration” between these “islands” is strong, and analogous
results can be deduced (i.e., we obtain a well-defined coalescent effective size).

We can summarize our findings as follows: In the absence of selection, many biological
details concerning the reproductive system and population structure and demography can
be fully captured by a single (coalescent-) effective population size Ne. The genealogical
structure then conforms to the standard neutral coalescent. In particular, this holds true for
all events that are rapid on a scale of typical coalescent times, such as rapid fluctuations
or strong migration. The two exceptions – other than selection – that lead to altered
genealogies are

1. Long-term demographic changes, where population growth leads to star-like genealo-
gies with an expected excess of singletons in the polymorphism pattern, while a
shrinking population has a reduced number of singletons. Consequently, Tajima’s D
is typically negative for population growth and positive for decline. Bottlenecks can
give rise to many complicated patterns.

2. Strong population structure (weak migration), which favors coalescent trees with a
topology that mirror this structure and typically produce an excess of polymorphism
of intermediate frequency (positive Tajima’s D).


